Questions

How can we count possibilities?
How can we predict unpredictable numbers?

Answens
By using the numbers in Pascal's triangle
We 'post-dict' that the average number is 8.2 with the deviation 2.3. We 'pre-dict' that the next number, with 95% probability, will fall in the confidence interval 8.2 ± 4.6 (average $\pm 2 *$ deviation)

1 COUNTING UNS YSTEMATIC EVENTS

Question1. How to count events occurring randomly?
Answer. By working out statistics for the events, their frequencies and their average.
Exemple1. To the question 'How old are you?' the answers are arranged in a table showing the frequencies of the answers. From the distribution the average answer and the average deviation is calculated. From this 'post-diction' a pre-diction can be made saying that the following answer, with 95% probability, will fall in the 'confidence interval' $\mathrm{I}=$ average answer $\pm 2 *$ average deviation.

Observations x	Frequency f	Relative frequency p	Cumulative frequency	Total years lived	Deviation from the mean	Average deviation
8	4	$4 / 50=0,08=8 \%$	8%	$8^{*} 4=32$	$10.1-8=2,1$	$2.1^{\wedge} 2^{*} 4=17.64$
9	12	$12 / 50=0,24=24 \%$	32%	$9^{*} 12=108$	$10.1-9=1.1$	$1.1^{\wedge} 2^{*} 12=14.52$
10	16	$16 / 50=0,32=32 \%$	64%	$10^{*} 16=160$	$10.1-10=0.1$	$0.1^{\wedge} 2^{*} 16=0.16$
11	10	$10 / 50=0,20=20 \%$	84%	$11^{*} 10=110$	$11-10.1=0.9$	$0.9^{\wedge} 2^{*} 10=8.1$
12	8	$8 / 50=0,16=16 \%$	100%	$12^{*} 8=96$	$12-10.1=1.9$	$1.9^{\wedge} 2^{*} 8=28.88$
Total	50	$1,00=100 \%$	-	506	-	69.3
Average, mean:				$506 / 50=10.1$		$(\sqrt{69.3) / 50=1.2}$

The frequency-table can be illustrated graphically both in case of grouped and non-grouped observations:

OBS	FRQ
8	4
9	12
10	16
11	10
12	8

DoubleClick
\&Edit

Exercise. Observe the sum of 2 dices 10 times. Set up a frequency table and calculate the confidence interval. Repeat the exercise 20 times, and 30 times. Repeat the exercise with the theoretical frequencies $p(x=2)=1 / 36$, $\mathrm{p}(\mathrm{x}=3)=2 / 36, \mathrm{p}(\mathrm{x}=4)=3 / 36, \ldots, \mathrm{p}(\mathrm{x}=12)=1 / 36 . \mathrm{x}$ is called a random variable or unpredictable variable.

2 COUNTING SYSTEMATIC EVENTS

Question1. How to count events (pools) in 3 repetitions of a 2-option Win/Loose-game?
Answer. By repeated multiplying.

Key to 32 -option games: 2 options for game 1 ; each having 2 options for game 2 totalling $2 * 2$ events; each having 2 options for game 3 totalling $(2 * 2) * 2=2^{\wedge} 3$ events.
Prediction. There are $\mathrm{r}^{\wedge} \mathrm{n}$ different events in n repetitions of an r -option game.
Exercise. Check the prediction with 4 2-option games, 4 3-option games, 4 4-option games, etc.
Question2. How to count letter plates?
Answer. By counting ordered arrangements, permutations.

Letters:	$1(\mathrm{~A})$	$2(\mathrm{~A}, \mathrm{~B})$	$3(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$	$4(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$	$5(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$
Plates:	1	2	6	$?$	$?$
	A	AB	ABC		
		BA	ACB		
			BAC		
			BCA		
			CAB		
			CBA		

Key to 3-letter plates: 3 options for letter 1 , 2 for letter 2 , 1 for letter 3 totalling $3 * 2 * 1=3$! plates.
Prediction. There are n ! different n -letter plates (n ! is read n factorial).
Exercise. Check the prediction with 4-letter plates and 5-letter plates, etc.
Question3. How to count restricted letter plates only consisting of 2 letters of 5.
Answer. By counting restricted permutations.

Letters:	lof2 (A,B)	2 of 3 (A,B,C)	2of4 (A,B,C,D)	2 of5
Plates:	2	6	$?$	$?$
	A	AB		
	B	AC		
		BC		
		BA		
		CA		
	CB			

Key to 2of5 letter plates: 5 options for letter 1, 4options for letter 2 totalling $5 * 4=5 * 4 *(3!/ 3!)=5!/ 3$! Plates.
Prediction. There are n!/(n-r)! different n-of-r letter plates.
Exercise. Check the prediction with 2of4 and 3of5letter plates.
Question4. How to count lotto tickets in a lotto game guessing 2of5 letters.
Answer. By using the binomial numbers $B(n, r)$ to count unordered arrangements, combinations.

Letters:	lof2 (A,B)	$2 \mathrm{of} 3(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$	2 of 4 (A,B,C,D)	2 of5
Plates:	2	$6 / 2$	$12 / 2$	$?$
	A	AB	AB	
	B	AC	AC	
		BC	AD	
		BA	BC	
		CA	BD	
		CB	CD	

Key to 2of5 lotto tickets: 5 options for letter 1, 4options for letter 2 totalling $5 * 4=5 * 4 *(3!/ 3!)=5!/ 3$! tickets giving $2 *$ the total number of tickets. Thus $\mathrm{B}(5,2)=5!/ 3!/ 2!=5!/(3!* 2!)=5!/[(5-2)!* 2!]$
Prediction. There are $\mathrm{B}(\mathrm{n}, \mathrm{r})=\mathrm{n}!/[(\mathrm{n}-\mathrm{r})!* \mathrm{r}!]$ different n -of-r lotto tickets.
Exercise. Check the prediction with 2of4 and 3of5letter lotto tickets.
Question5. Is there a pattern in the binomial numbers $\mathrm{B}(\mathrm{n}, \mathrm{r})$?
Answer. The binomial numbers B(n,r) form a triangle (Pascall's triangle).
Example. In a maze of blocks there are two options, going right \& going left.

Prediction. $\mathrm{B}(\mathrm{n}, 0)=\mathrm{B}(0, \mathrm{n})=\mathrm{n} . \mathrm{B}(\mathrm{n}, \mathrm{r})=\mathrm{B}(\mathrm{n}-\mathrm{r}, \mathrm{r}) . \mathrm{B}(\mathrm{n}, \mathrm{r})=\mathrm{B}(\mathrm{n}, \mathrm{r}-1)+\mathrm{B}(\mathrm{n}-1, \mathrm{r}) . \mathrm{B}(0,0)$ is defined as 1 .
Exercise. Check the prediction with the numbers $B(6, r)$ and $B(8, r)$.
Question6. How to count the winners in 42 -option Win/Loose-games?
Answer. By the binomial numbers B(n,r).

Key. Among 2 persons, 1 wins 0 times and 1 wins 1 time (1,1 persons win 0,1 times) in 12 -option game.
Among 4 persons 1,2,1 persons win 0,1,2 times in 22 -option games.
Among 8 persons $1,3,3,1$ persons win $0,1,2,3$ times in 32 -option games.
Predictionl. Among 16 persons $1,4,6,4,1$ persons win $0,1,2,3$ times in 42 -option games.
Or among $2^{\wedge} 4$ persons $B(4,0), B(4,1), B(4,2), B(4,3), B(4,4)$ persons win $0,1,2,3$ times in 42 -option games.
Exercise. Check the binomial prediction with 4 2-option games.
Prediction2. Among $2^{\wedge} n$ persons $B(n, r)$ persons win r times in $n 2$-option games.
Exe rcise. Check the binomial prediction with 6, 7 and 82 -option games.

Question7. How to count the winners in 4 3-option games (1 Win and 2 Loose)?
Answer. By weighted binomial numbers.

Persons in 3 3-option games

$1 * 2 / 3 * 2 / 3 * 2 / 3 * 27$
B $(3,3)^{*}(1 / 3)^{\wedge} 0^{*}(2 / 3)^{\wedge} 3 * 27$
$3 * 1 / 3 * 2 / 3 * 2 / 3 * 27$
B $(3,2)^{*}(1 / 3)^{\wedge} 1^{*}(2 / 3)^{\wedge} 2 * 27$
$3 * 1 / 3^{*} 1 / 3 * 2 / 3 * 27 \quad \mathrm{~B}(3,1)^{*}(1 / 3)^{\wedge} 2^{*}(2 / 3)^{\wedge} 1 * 27$
$1 * 1 / 3^{*} 1 / 3^{*} 1 / 3 * 27 \quad \mathrm{~B}(3,0)^{*}(1 / 3)^{\wedge} 3^{*}(2 / 3)^{\wedge} 0 * 27$

Key. Among 3 persons 2 win 0 times and 1 wins 1 time (2,1 persons win 0,1 times) in 13 -option game.
Among 9 persons $4,4,1$ persons win $0,1,2$ times in 23 -option games.
Among 27 persons $8,12,6,1$ persons win $0,1,2,3$ times in 33 -option games.
Predictionl. Among 81 persons $16,32,24,8,1$ persons win $0,1,2,3,4$ times in 4 3-option games.
Or Among $3^{\wedge} 4$ persons $\mathrm{B}(4,0) * 16, \mathrm{~B}(4,1) * 8, \mathrm{~B}(4,2) * 4, \mathrm{~B}(4,3) * 2, \mathrm{~B}(4,4) * 1$ persons win $0,1,2,3,4$ times.
Or A mong $3^{\wedge} 4$ persons $\mathrm{B}(4,0)^{*} 2^{\wedge} 4, \mathrm{~B}(4,1)^{*} 2^{\wedge} 3, \mathrm{~B}(4,2)^{* 2 \wedge} 2, \mathrm{~B}(4,3)^{*} 2^{\wedge} 1, \mathrm{~B}(4,4)^{*} 2^{\wedge} 0$ persons win $0,1,2,3,4$ times.
Exercise1. Check the binomial prediction with 43 -option games.
Prediction2. Among $3^{\wedge} \mathrm{n}$ persons $\mathrm{B}(\mathrm{n}, \mathrm{r})^{*} 1^{\wedge} \mathrm{r}^{*} 2^{\wedge}(\mathrm{n}-\mathrm{r})$ persons win r times in n 3 -option 1W/2L-games
Exercise2. Check the binomial prediction with 5, 6 and 73 -option games, etc.
Prediction3. Among $4^{\wedge} \mathrm{n}$ persons $\mathrm{B}(\mathrm{n},)^{*} 1^{\wedge} \wedge^{*} 3^{\wedge}(\mathrm{n}-\mathrm{r})$ persons win r times in n 4 -option 1W/3L-games
Exercise3. Check the binomial prediction with 2, 3 and 4 4-option games, etc.
Prediction4. Among $\mathrm{k}^{\wedge} \mathrm{n}$ persons $\mathrm{B}(\mathrm{n}, \mathrm{r})^{*} 1^{\wedge} \mathrm{r} *(\mathrm{k}-1)^{\wedge}(\mathrm{n}-\mathrm{r})$ persons win r times in n k -option $1 \mathrm{~W} /(\mathrm{k}-1) \mathrm{L}$-games.
Exercise4. Check the binomial prediction with 45 -option games and 46 -option games.
Prediction5. Among $\mathrm{k} \wedge \mathrm{n}$ persons $\mathrm{B}(\mathrm{n}, \mathrm{r})^{*} \mathrm{q}^{\wedge} \mathrm{r}^{*}(\mathrm{k}-\mathrm{q})^{\wedge}(\mathrm{n}-\mathrm{r})$ persons win r times in n k -option $\mathrm{qW} /(\mathrm{k}-\mathrm{q}) \mathrm{L}$-games. Exercise5. Check the binomial prediction with 35 -option games and a 46 -option games both with 2 wins.
Question8. How to predict the chance for winning?
Answer. By using probabilities.
Example1. A dice is manipulated changing the 6 and 5 to 1 and the 4 to 2 . Thus out of 6 outcomes 1 occurs 3 times $\left(3=3 / 6^{*} 6\right)$, 2 occurs 2 times $\left(2=2 / 6^{*} 6\right)$ and 3 occurs 1 time $\left(1=1 / 6^{*} 6\right)$. The number $3 / 6$ is called the chance or probability for the event $1: \mathrm{p}(\mathrm{x}=1)=3 / 6$. Likewise $\mathrm{p}(\mathrm{x}=2)=2 / 6, \mathrm{p}(\mathrm{x}=3)=1 / 6$.
Example2. In a 3 -option game the chance to win is $p=1 / 3$ if the outcomes are equally likely. Thus the probabilities can be found from the binomial numbers:

Persons
$\begin{array}{ll}1 * 2 / 3^{*} 2 / 3^{*} 2 / 3 * 27 & \mathrm{~B}(3,3)^{*}(1 / 3)^{\wedge} 0^{*}(2 / 3)^{\wedge} 3 * 27 \\ 3 * 1 / 3^{*} 2 / 3^{*} 2 / 3 * 27 & \mathrm{~B}(3,2)^{*}(1 / 3)^{\wedge} 1^{*}(2 / 3)^{\wedge} 2 * 27 \\ 3 * 1 / 3^{*} 1 / 3^{*} 2 / 3 * 27 & \mathrm{~B}(3,1)^{*}(1 / 3)^{\wedge} 2^{*}(2 / 3)^{\wedge} 1 * 27 \\ 1 * 1 / 3^{*} 1 / 3^{*} 1 / 3 * 27 & \mathrm{~B}(3,0)^{*}(1 / 3)^{\wedge} 3^{*}(2 / 3)^{\wedge} 0 * 27\end{array}$

Probabilities
$\mathrm{p}(\mathrm{x}=0)=\mathrm{B}(3,3)^{*}(1 / 3)^{\wedge} 0^{*}(2 / 3)^{\wedge} 3$
$p(x=1)=B(3,2)^{*}(1 / 3)^{\wedge} 1^{*}(2 / 3)^{\wedge} 2$
$p(x=2)=B(3,1)^{*}(1 / 3)^{\wedge} 2^{*}(2 / 3)^{\wedge} 1$
$p(x=3)=B(3,0)^{*}(1 / 3)^{\wedge} 3^{*}(2 / 3)^{\wedge} 0$

The binomial probabilities $\mathrm{p}(\mathrm{x}=\mathrm{r})=\mathrm{B}(\mathrm{n}, \mathrm{r})^{*} \mathrm{p}^{\wedge} \mathrm{r}^{*}(1-\mathrm{p})^{\wedge}(\mathrm{n}-\mathrm{r})$, where x counts the number of wins, are
cumulated before being tabulated, e.g. in case of 53 -option games with a winning chance $p=1 / 3$:

x	p	$\Sigma \mathrm{p}$	$P(x>=3)$ at least 3 W	$\mathrm{P}(\mathrm{x}<=4)$ at most 4W	$\mathrm{P}(\mathrm{x}=2)$ Precisely 2W	$\mathrm{P}(1<=\mathrm{x}<=3)$ Between 1W \& 3W
0	0.132	0.132				-0.132
1	0.329	0.461			-0.461	
2	0.329	0.790	-0.790		+0.790	
3	0.165	0.955				+0.955
4	0.041	0.996		+0.996		
5	0.004	1.000	+1.000			
			0.210	0.996	0.329	0.832

Thus there is a 21% chance for winning at least 3 times of 5 , etc.
Example2. The average wins in a $n=5$ game depends on the winning chance (here $p=1 / 3, p=1 / 4$ and $p=1 / 2$):

x	p	$\mathrm{x}^{*} \mathrm{p}$		x	p	$\mathrm{x}^{*} \mathrm{p}$		x	p
0	0.132	0		0	0.237	0		0	0.031
1	0.329	0.329		1	0.396	0.396		1	0.156
2	0.329	0.658		2	0.264	0.527		0.156	
3	0.165	0.495		3	0.088	0.264		2	0.313
4	0.041	0.164		4	0.015	0.059		0.625	
5	0.004	0.020		5	0.001	0.005		4	0.313
0.938									
		$\mathbf{m = 1 . 6 6 6}$				$\mathbf{m = 1 . 2 5}$		0.02	0.031

Prediction. The average wins in n games with the winning chance p is $\mathrm{m}=\mathrm{n}^{*} \mathrm{p}$
Exercise. Check the prediction with $n=3$ and $n=4$ games with the winning chance $p=1 / 3, p=3 / 4, p=1 / 2, p=2 / 5$.

Example3. The average deviation from the average depends on the winning chance (here $\mathrm{p}=1 / 4$ and $\mathrm{p}=1 / 2$):

x	p	$\mathrm{x}^{*} \mathrm{p}$	$\mathrm{c}=\mathrm{x}-\mathrm{m}$	$\mathrm{c}^{\wedge} 2^{*} \mathrm{p}$	x	p	$\mathrm{x}^{*} \mathrm{p}$	$\mathrm{c}=\mathrm{x}-\mathrm{m}$	$\mathrm{c}^{\wedge} 2^{*} \mathrm{p}$
0	0.237	0	-1.25	0.371	0	0.031	0	-2.5	0.195
1	0.396	0.396	-0.25	0.025	1	0.156	0.156	-1.5	0.352
2	0.264	0.527	0.75	0.148	2	0.313	0.625	-0.5	0.078
3	0.088	0.264	1.75	0.269	3	0.313	0.938	0.5	0.078
4	0.015	0.059	2.75	0.111	4	0.156	0.625	1.5	0.352
5	0.001	0.005	3.75	0.014	5	0.031	0.156	2.5	0.195
	$n * p=$	m=1.25		$\mathrm{v}=0.938$		$n^{*} p=$	m=2.5		$\mathrm{v}=1.25$
			$\sqrt{n} * \underline{p}=$	$\sqrt{v}=0.968$				$\sqrt{n} * \underline{p}=$	$\sqrt{v=1.118}$

Prediction. The average deviation D in n games with the winning chance p is $D=\sqrt{ }\left(n^{*} \mathrm{p}^{*}(1-\mathrm{p})\right)=\sqrt{n^{*}} \underline{p}$, where the average of p and $1-p$ is $p=\sqrt{ }\left(p^{*}(1-p)\right)$
Exercise. Check the prediction with $n=3$ and $n=4$ games with the winning chance $p=1 / 3, p=3 / 4, p=1 / 2, p=2 / 5$.
Remark. Dividing the binomial numbers $\mathrm{B}(\mathrm{n}, \mathrm{r})^{*} \mathrm{q}^{\wedge} \mathrm{r}^{*}(\mathrm{k}-\mathrm{q})^{\wedge}(\mathrm{n}-\mathrm{r})$ with $\mathrm{k}^{\wedge} \mathrm{n}$ gives the binomial probabilities:
$\frac{\mathrm{B}(7, \mathrm{r}) * 1^{\wedge} \mathrm{r} * 3^{\wedge}(7-\mathrm{r})}{4^{\wedge} 7}=\mathrm{B}(7, \mathrm{r}) * \frac{1^{\wedge} \mathrm{r} * 3^{\wedge}(7-\mathrm{r})}{4^{\wedge} \mathrm{r} * 4^{\wedge}(7-\mathrm{r})}=\mathrm{B}(7, \mathrm{r}) * \frac{1^{\wedge} \mathrm{r}}{4^{\wedge} \mathrm{r}} * \frac{3^{\wedge}(7-\mathrm{r})}{4^{\wedge}(7-\mathrm{r})}=\mathrm{B}(7, \mathrm{r}) * \frac{1}{4} \wedge * \frac{3}{4} \wedge(7-\mathrm{r})=\mathrm{B}(7, \mathrm{r}) * \mathrm{p}^{\wedge} \mathrm{r} *(1-\mathrm{p})^{\wedge}(7-\mathrm{r})$
Question9. How to predict the unpredictable when events are systematic?
Answer. The number of wins can be predicted as $x^{\prime}=x$ average $\pm 2 *$ average deviation $=n^{*} p \pm 2 * \sqrt{n^{*}} \mathrm{p}$. And the percentage of wins can be predicted as $p^{\prime}=x^{\prime} / n=\left(n^{*} p \pm 2^{*} \sqrt{n^{*} p}\right) / n=p \pm 2^{*} p / \sqrt{n}$.
Example1. In a $n=7$ game with the winning chance $p=2 / 5$ the numbers of wins is predicted to be $7 * 2 / 5 \pm$ $2 * \sqrt{ } 7 * \sqrt{ }(2 / 5 * 3 / 5)=2.8 \pm 2.6=[0.2 ; 5.4]$. So winning 0,6 or 7 times is less than 5% probable.
Exercise. What is the prediction for the sum when throwing 2 dices? And when throwing 3 dices? Check it.
Question10. How does the mean of a sample vary?
Answer. From a population with a mean mand a deviation D the experiment 'examine a member' is repeated n times. The mean of this sample is an unpredictable event having m as mean and $D / \sqrt{ } n$ as deviation. Its distribution is called a normal distribution which is tabulated as cumulated frequencies, e.g. $\Phi(1.220)=0.889$. Example. Throwing a dice has 6 events with the mean 3,5 and the deviation 1,71 . A sample is produced by throwing a dice 10 times (or throwing 10 dices once). The sample-mean is an unpredictable variable with the mean 3,5 and the deviation $1,71 / \sqrt{ } 10$.
Exercise. Check the prediction by 12 times throw ing ten dices each time observing the mean.
Question11. Are there any short cuts to the binomial distribution?
Answer. A binomial distribution can be approximated by a normal distribution if $n * p>5$ and $n *(1-\mathrm{p})>5$.
If $\mathrm{n}=20$ and $\mathrm{p}=0.3$ then $\mathrm{m}=\mathrm{n} * \mathrm{p}=20 * 0.3=6($ and $\mathrm{n} *(1-\mathrm{p})=20 * 0.7=14)$ and $\mathrm{D}=\sqrt{ } \mathrm{n} * \mathrm{p}=\sqrt{ } 20 * \sqrt{ }(0.3 * 0.7)=2.05$

Factual number	Approximated number
$\mathrm{P}(\mathrm{x}<=8)=0.887$	$\mathrm{P}(\mathrm{x}<=8)=\Phi((8+0.5-6) / 2.05)=\Phi(1.220)=0.889$

Exercise. Check several examples of the normal approximation prediction of binomial probabilities.
Question12. How to win in a 2person game?
Answer. By mixing the strategies unpredictably.
Example. The players A and B can choose between two strategies, Paper and Stone. The gain paid from B to A depends on the combination $(A, B): g(P, P)=-1, g(S, S)=-1, g(P, S)=1, g(S, P)=2$. A hopes for the gain 2 and chooses S; B sees this and chooses S; A sees this and chooses P; B sees this and chooses P, etc.
A broker proposes the following solution: both A and B choose a mixed strategy $P / S=x /(1-x)$ and $P / S=$ $y /(1-y)$. The gain then is $g=-1 * x * y+1 * x *(1-y)+2 *(1-x) * y-1 *(1-x) *(1-y)=-1-5 * x^{*} y+2 * x+3 * y$.
$y=0$ lets $g=-1+2 x ; y=1$ lets $g=2-3 x$. The intersection point is $x=3 / 5=60 \%$ and $g=1 / 5$.
$x=0$ lets $g=-1+3 y ; x=1$ lets $g=1-2 y$. The intersection point is $y=2 / 5=40 \%$ and $g=1 / 5$.
Thus the fair result of this game is that B pays to A $1 / 5$ per game. Else A weighs P 60%, B weighs P 40%.
Exe rcise. Check the prediction by playing the game with the weighed strategies determined by 10 cards.

3 REVERSING STATISTICS

Question1. How to do reversed calculation in statistics?
Answer. By testing hypothesis.
Example 1. There is one red card, or is there?
I assume I got what I ordered, 1 red and 1 black card. To check I randomly draw 1 card 3 times, giving 0 red cards. The probability for this event is $p(x=0)=B(n, r)^{*} p^{\wedge} r^{*}(1-p)^{\wedge}(n-r)=B(3,0)^{*} 1 / 2^{\wedge} 0^{*}(1 / 2)^{\wedge} 3=1 / 8$.
To reject my hypothesis 1 R1B the probability must be less than 5%, so I have to draw $\mathrm{n}=5$ times since
$\mathrm{p}(\mathrm{x}=0)=\mathrm{B}(\mathrm{n}, \mathrm{r})^{*} \mathrm{p}^{\wedge} \mathrm{r}^{*}(1-\mathrm{p})^{\wedge}(\mathrm{n}-\mathrm{r})=\mathrm{B}(\mathrm{n}, 0)^{*} 1 / 2^{\wedge} 0^{*}(1 / 2)^{\wedge} \mathrm{n}=1 / 2^{\wedge} \mathrm{n}=5 \%$, gives $\mathrm{n}=\log 5 \% / \log ^{1 / 2}=4.3$.
Example 2. There is only one red card, or is there?
I assume I got what I ordered, 1 red \& 2 black cards. To check I randomly draw 1 card 10 times, giving 6 red
cards. The probability for the event x$\rangle=6$ with $\mathrm{n}, \mathrm{p}=10,1 / 3$ is $\mathrm{p}(\mathrm{x}\rangle=6)=1-\mathrm{p}(\langle=5)=1-0.923=0.077$.
I cannot reject my hypothesis 1R2B since the probability is higher than 5%.
Next time I got 7 red cards. The probability for the event $x>=7$ in an $n, p=10,1 / 3$ game is $p(x>=7)=1-p(<=6)$ $=1-0.980=0.02$. Now I reject my hypothesis since the probability is less than 5%.
Example 3. I got 20 cards, how many are red? To check I randomly draw 1 card 10 times, giving 6 red cards. The following hypothes is can be rejected: The number of red cards is $0,1,2, \ldots, 6,18,19,20$.
With $\mathrm{n}, \mathrm{p}=10,1 / 20$ the probability for the event $\mathrm{x}>=6$ is $\mathrm{p}(\mathrm{x}>=6)=1-\mathrm{p}(<=5)=1-1.000=0$
With $\mathrm{n}, \mathrm{p}=10,6 / 20$ the probability for the event $\mathrm{x}>=6$ is $\mathrm{p}(\mathrm{x}>=6)=1-\mathrm{p}(<=5)=1-0.953=0.047$
With $\mathrm{n}, \mathrm{p}=10,17 / 20$ the probability for the event $\mathrm{x}<=6$ is $\mathrm{p}(\mathrm{x}<=6)=0.050$
With $\mathrm{n}, \mathrm{p}=10,19 / 20$ the probability for the event $\mathrm{x}<=6$ is $\mathrm{p}(\mathrm{x}<=6)=0.001$
This result can be predicted by the confidence interval $\mathrm{I}=\mathrm{p} \pm 2 * \mathrm{p} / \sqrt{ } \mathrm{n}=6 / 10 \pm 2 * 0.6 / \sqrt{ } 10=0.60 \pm 0.31=$ [0.29;0.91]. Thus the hypotheses that can be rejected are from $0 / 20$ to $6 / 20$ and from $18 / 20$ to 20/20.
Exercise. Take 2 like bags. Put 2 reds \& 1 black ball in one and 1 red \& 2 blacks in the other. Choose 1 bag. Repeat n times the experiment 'take out 1 ball' until you can form a hypothesis. How sure can you be?

4 COMP ARING REPRESENTATIONS

Question1. How to compare parts?
Answer. Through conditional percentages.
Example 1. We compare two decks of cards with and without red Kings (I and II).

I	Spades	NonSpades	Total					
CourtCards	3	9	12					
NumberCards	10	30	40					
Total	13	39	52	\quad	II	SpartCards	NonSpades	Total
:---	:---	:---	:---	:---				
NumberCards	10	30	10					
Total	13	37	50					

I. The unconditional probability or percentage of CoutCards (among all) $=p(C$ Iall $)=p(C)=12 / 52=23.1 \%$.

The conditional probability or percentage of CoutCards (among the spades) $=\mathrm{p}(\mathrm{CIS})=3 / 13=23.1 \%$.
Since $p(C l S p a d e)=p(C)$ we say that 'among the spades the CourtCards are neither over- or under-represented.'
The conditional probability or percentage can be shown in a contingency table or pivot table:

I after colour	Spades	NonSpades	Total					
CourtCards	23.1%	23.1%	23.1%					
NumberCards	76.9%	76.9%	76.9%					
Total	100%	100%	100%	\quad	I after kind	Spades	NonSpades	Total
:---	:---	:---	:---	:---				
CourtCards	25%	75%	100%					
NumberCards	25%	75%	100%					
Total	25%	75%	100%					

II. The unconditional probability or percentage of CoutCards (among all) $=p(C$ Iall $)=p(C)=10 / 50=20 \%$.

The conditional probability or percentage of CoutCards (among the spades) $=\mathrm{p}(\mathrm{CIS})=3 / 13=23.1 \%$.
Since $p(C I$ Spade $)>p(C)$ we say that 'among the spades the CourtCards are over-represented.'
Since $\mathrm{p}(\mathrm{C}$ INonSpade $)<\mathrm{p}(\mathrm{C})$ we say that 'among the non-spades the CourtCards are under-represented.'
The conditional probability or percentage can be shown in a contingency table or pivot table:

II acc. colour	Spades	NonSpades	Total					
CourtCards	23.1%	18.9%	20%					
NumberCards	76.9%	81.1%	80%					
Total	100%	100%	100%	\quad	II acc. kind	Spades	NonSpades	Total
:---	:---	:---	:---	:---				
CourtCards	30%	70%	100%					
Nu mberCards	25%	75%	100%					
Total	26%	74%	100%					

Example 2. A big population is distributed according to gender and smoking habit. To get an estimate of the percentages we draw a sample from a population creating an uncertainty to the percentages $D=2^{*} \mathrm{p} / \sqrt{ } \mathrm{n}$.
Thus $\mathrm{p}($ Girl I Smoker $)=27.3 \%$ and $\mathrm{n}=550$ gives $\mathrm{D}=2 * \sqrt{ }(27.3 \% * 72.7 \%) / \sqrt{550}=3.8 \%$.
We set up frequency tables and contingency tables:

A deviation is significant if it exceeds the uncertainty. From the distribution acc. to gender table we can say:
Among the smokers the females are signif icantly under-represented ($31.8 \%-27.3 \%=4.5 \%>3.8 \%$).
Among the non-smokers the females are not significantly over-represented ($35.1 \%-31.8 \%=3.3 \%<3.4 \%$).
In the population the females are significantly under-represented ($50 \%-31.8 \%=18.2 \%>2.6 \%$).
Exercise. What can be said about the males? What can be said from the distribution after smoking table?

