COUNT&ADD IN SPACE

Question	Answer
How to predict the position of	By using a coordinate-system: If $Po(x,y) = (3,4)$ and if $\Delta y/\Delta x = 2$, then
points and lines?	$P1(8,y) = P1(x+\Delta x, y+\Delta y) = P1((8-3)+3, 4+2*(8-3)) = (8,14)$
How to use the new calculation	Computers can calculate set of numbers (vectors) and set of vectors
technology?	(matrices)

1 COUNTING POSITION

Question. How can we count the position of a point and a line?

Answer. By using a Cartesian coordinate-system assigning numbers to vertical and horizontal distances: **Example**. A stack has 4 corners. The lower left corner is chosen as the centre form which steps are counted both in the horizontal direction (x-axis) and in the vertical direction (y-axis). The numbers are called the 1. and 2. coordinates coordinating points and numbers. The two axis are called a Cartesian coordinate system.

Points. In a c*b stack the 4 corr	her points have the coordinates		† y			
PO(x0,y0) = (0,0) is called the o	origin	P	2	P3: $(x3,y3) = (b,c)$		
P1(x1,y1) = (b,0) where b is the	e right/left-number					
P2(x2,y2) = (0,c) where c is the	up/down-number		c			
P3(x3,y3) = (b,c)		_	b			
		P	01	P1 x		
Lines. The four side lines have	the equations					
P0P1: y=0, P2P3: y=c, P0P2: x=	=0, P1P3: x=b	P2 P3				
The two diagonals have the equ	ations:			Δy		
POP3: $\Delta y = \Delta y / \Delta x * \Delta x$						
y-0 = (c-0)/(b-0) * (x-	0)			$ \Delta x $		
y = c/b * x			c	y		
or $y = \tan v * x$						
where v is the altitude angle of	the diagonal.	v b				
P2P1: $\Delta y = \Delta y / \Delta x^* \Delta x = (0 - \alpha)^2$	$c)/(b-0)*\Delta x = -c/b*\Delta x$	PO		x P1		
or $y-c = -c/b^*(x-0)$, or y	= -c/b * x + c					
Distances. Horizontal and verti	cal distances are the differences	The distanc	e from P3 to the	e diagonal P2P1 is		
between the coordinates: IPOP1	= b-0 = b & POP2 = 0-c = c	predicted by inserting the P3's coordinates in the				
where lbl means the numerical	value of b: $ \pm 3 = 3$.	distance-formula:				
The length of the diagonal is pr	edicted by Pythagoras:	Distance = $ a_1x+b_1y+c /\sqrt{(a_1^2+b_1^2)}$				
$ POP3 ^{2} = POP1 ^{2} + P1P2 ^{2}$	$2 = (x1 - x0)^{2} + (y3 - y1)^{2}$					
$=(b-0)^{2}+(c-0)^{2}=$	$b^{2} + c^{2}$					
The equation for a line y = m [*]	*x+b					
Point&Point: (5,3) og (7,9)		Point&Slope: (5,3) with the slope 2				
y = ?	y = ?		$\Delta y = \Delta y / \Delta x * \Delta x$			
$\Delta y = y - 3$	$\Delta y = y - 3$ $y - 3 = 3^*(x - 5)$			$y - 3 = 2^*(x - 5)$		
$\Delta x = x - 5$	$\Delta x = x - 5$ $y = 3 + x - 15 + 3$			y = 2 x - 10 + 3		
$\frac{\Delta y}{\Delta x} = \frac{9-3}{7-5} = \frac{6}{2} = 3$ $y = 3*x - 12$		$\frac{\Delta y}{\Delta x} = 2$		y = 2 x - 7		

Exercise. Describe the corners, side lines and diagonals in a 3*5 stack.

2 PREDICTING INTERSECTION POINTS

Question. How can we predict the intersection point between two lines? **Answer**. By inserting one line equation in the other, or by reversing vector calculation as in 4. **Intersection points.** The two diagonals have the intersection point S(x,y):

		· · · · · · · · · · · · · · · · · · ·	
(x,y) = ?	$\mathbf{y} = \mathbf{y}$	(x,y)=?	y = y
y = c/b*x	$c/b^*x = -c/b^*x + c$	y = a1x+b1	a1x+b1 = a2x+b2
y = -c/b * x+c	2*c/b*x = c	y = a2x+b2	x(a 1-a 2) = b 2-b 1
	$\mathbf{x} = \mathbf{b}/2$	D = a1b2 - a2b1	x = (b 2 - b 1)/(a 1 - a 2)
	$\mathbf{y} = \mathbf{c}/\mathbf{b} * \mathbf{b}/2 = \mathbf{c}/2$	a1 b1	y = a1x + b1
		$= _{a2 b2} _{b2}$	$=(a1^{*}(b2-b1)+b1^{*}(a1-a2))/(a1-a2)$
			=(a1*b2-a1*b1+b1*a1-b1*a2)/(a1-a2)
Check:	c/b*b/2 = -c/b*b/2 + c	D: Determinant	=(a1b2 - a2b1)/(a1-a2) = D/(a1-a2)
	c/2 = -c/2 + c	a1 = c/b, b1 = 0	x = (c-0)/(c/b+c/b) = c/(2*c/b) = c/2/c*b = b/2
	c/2 = c/2	a2 = -c/b, b2 = c	y = (c/b*c-(-c/b)*0)/(c/b+c/b) = c/2
Evoraisa Dro	dict the intersection point of t	ha diagonale in a 3*5	stack And in a normalia form

Exercise. Predict the intersection point of the diagonals in a 3*5 stack. And in a parallelogram.

3 VECTOR AND MATRIX

Question. How can we perform multiple simultaneous calculations?

Answer. By using number sets (vectors) and vector sets (matrices).

Number sets (vectors) are used to describe position in a coordinate system, and to describe goods and prices. **Example.** Two goods weighing 15 and 35 kg are priced at 4%/kg and 6%/kg. The total value then is T = 15*4 + 35*6. This can be described by two vectors, vertical or horizontal:

Exercise. Describe blending 5 sorts of tea by vectors.

4 REVERSING VECTOR CALCULATIONS

Question. How can we reverse vector calculations?

Answer. By using determinants.

Two vectors equations

The vectors equations	are annea to	one matrix equation
$(7 \ 5) * \begin{pmatrix} x \\ y \end{pmatrix} = 7*x + 5*y = 29 \& (8 \ 3) * \begin{pmatrix} x \\ y \end{pmatrix}$	= 8*x+3*y = 25	$ \begin{pmatrix} 7 & 5 \\ 8 & 3 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7*x+5*y \\ 8*x+3*y \end{pmatrix} = \begin{pmatrix} 29 \\ 25 \end{pmatrix} $
A general matrix equation looks like this $\begin{pmatrix} a1\\ b1 \end{pmatrix}$	$\begin{pmatrix} a2 \\ b2 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} $	$\begin{pmatrix} a1^*x+a2^*y\\b1^*x+b2^*y \end{pmatrix} = \begin{pmatrix} c1\\c2 \end{pmatrix}$. It can be solved by
	. (a1 a2	(a1 a2) $(a1 a2)$

are united to

one matrix equation

introducing the determinant of a matrix: Determinant $\begin{pmatrix} b_1 & b_2 \end{pmatrix} = \begin{vmatrix} b_1 & b_2 \end{vmatrix} = a1*b2 - a2*b1$

	$\langle 01 \ 02 \rangle + 0$	1 02
$a1^*x + a2^*y = c1$ (I)		$b1^*x + b2^*y = c2$ (II)
$a1^*x = c1 - a2^*y$		$b1^*x = c2 - b2^*y$
a1*b1*x = c1*b1 - a2*b1*y		a1*b1*x = a1*c2 - a1*b2*y
\rightarrow	a1*c2 - a1*b2*y = c1*b1 - a2*b1*y	\leftarrow
	a1*c2 - b1*c1 = a1*b2*y - a2*b1*y	
	a1*c2 - b1*c1 = (a1*b2 - a2*b1)*y	
	a1*c2 - b1*c1	
	$\frac{1}{a1*b2 - a2*b1} = y$	
	a1 c1	
	b1 c2	
	$\frac{1}{1}$ $\frac{1}$	
	61 62	
a2*y = c1 - a1*x		b2*y = c2 - b1*x
a2*b2*y = c1*b2 - a1*b2*x		a2*b2*y = a2*c2 - a2*b1*x
\rightarrow	c1*b2 - a1*b2*x = a2*c2 - a2*b1*x	\leftarrow
	c1*b2 - a2*c2 = a1*b2*x - a2*b1*x	
	c1*b2 - a2*c2 = (a1*b2 - a2*b1)*x	
	c1*b2 - a2*c2	
	a1*b2 - a2*b1 = x	
	c1 a2	
	$ \mathbf{c}^2 \mathbf{b}^2 $	
	$\begin{vmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{b} & \mathbf{a} \end{vmatrix} = \mathbf{x}$	
	b1 b2	

Example. Three different goods or spatial positioning involves 3x3 matrices leading to solving 3 equations with 3 unknowns by letting Excel calculate the determinants:

(3	5	6`)	(\mathbf{X}))	(3*x+5*y+6*z)	(52)		3*x + 5*y + 6*z = 52
2	2 4	3	*	у	=	2*x+4*y+3*z =	= 31	or as 3 equations:	$2^{*}x + 4^{*}y + 3^{*}z = 31$
$\setminus \epsilon$	54	2,)	(Z))	(6*x+4*y+2*z)	(42)		6*x + 4*y + 2*z = 42

	52 5 6			3 52 6			3 5 52	
	31 4 3			2 31 3			2 4 31	
	42 4 2	-152	1	6 42 2	-76	2 -	6 4 42	-190
x =	3 5 6	-38	= 4 y =	3 5 6	-38	Z = Z =	3 5 6	-38
	2 4 3			2 4 3			2 4 3	
	6 4 2			6 4 2			6 4 2	
ſ	DETERMINA	ANTS		_				
	2x2 Matrix	7	29		3x3 Matrix	3	5	6
	-57	8	25		-38	2	4	3
	DoubleClick	&Edit		-		6	4	2

Exercise. Solve the equation system

5 DISPLACEMENT AND ROTATION WITH VECTORS AND MATRICES

Question. How can we use vectors and matrices in geometry? **Answer**. To predict displacements and rotations in the plane and in the space. **Example 1.** A displacement vector $\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ displaces the vector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ going from $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ to $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ to a vector going from $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ DISPLACEMENT BEFORE AFTER 10 10 $\Delta \mathbf{X}$ 2 8 8 5 Δy 6 6 Enter $\Delta x \& \overline{\Delta} y$. Enter point2 before 4 4 Point1 Point2 2 2 A Λ Before 0 1 Х 22 22 0 -2 10 y HO 10 HC -4 4 -6 -6 After х 2 3 -8 -8 5 3 v 10 10 DoubleClick&Edit -sin v rotates a vector v degrees around its starting point. **Example 2.** A rotation matrix cos v . sin v The vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is rotated 63 degrees to the vector $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos 63 & -\sin 63 \\ \sin 63 & \cos 63 \end{pmatrix} * \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos 63 \\ \sin 63 \end{pmatrix} = \begin{pmatrix} 0.454 \\ 0.891 \end{pmatrix}$ ROTATION Enter Angle BEFORE AFTER Angle **RotationMatrix** 0,454 -0,891 63 0,891 0,454 DoubleClick&Edit Point1 Point2 Before 0 1 х 0 0 y

Exercise. Try 0 0,891 of displacements and rotation by editing the Excel-windows.

6 TRIANGLES WITH VECTORS AND MATRICES

0.454

After

х

0

Question. How can a triangle be predicted by vectors and matrices? **Ans wer**. By using the triangular vector formulas. **Example**. A triangle has the vertices A(2,1), B(6,3) and C (4,6). Predict the sides, the angles and the area. Method1. Frame&Cut. The triangle is framed in a rectangle, from which 3 right triangles are cut. Method2. The triangle vectors are AB = (6-2, 3-1) = (4,2), BC = (4-6, 6-3) = (-2,3) and AC = (4-2, 6-1) = (2,5). The side $AB: |AB| = \sqrt{(AB^*AB)} = \sqrt{(4,2)^*(4,2)} = \sqrt{(4^*4 + 2^*2)} = \sqrt{20}$, $|AC| = \sqrt{29}$ and $|BC| = \sqrt{13}$ The angle A: $AB^*AC = |AB|^* |AC|^* \cos A$, so $\cos A = AB^*AC / |AB| / |AC| = (4^*2+2^*5)/\sqrt{20}/\sqrt{29} = 0.747$, A = 41.6 The area = $\frac{1}{2}*|AB^*AC| = \frac{1}{2}*|AB^*AC| = \frac$

7 PREDICTING CONIC SECTIONS

Question. How can we predict the shape of conic sections? Answer. By second degree equations. Rotated around the y-axis a line with altitude angle v forms a vertical cone cutting out different conic sections from a plane depending on the angle of intersection u.

The shapes are predicted by the formula $y^2 = 2*x - (1-e^2)*x^2$, where e is called the eccentricity: circle (u = 0, e = 0); ellipse (0 < u < v, 0 < e < 1); parabola (u = v, e = 1); hyperbola (u = 90, e > 1).

Parallel dis placement. The coordinate system K is displaced x1 to the right and y1 up to K'. Thus the origin in K' has the coordinates $(x,y) = (x_0,y_0)$ in K, and (x',y') = (0,0) in K'. Thus the coordinates are related by: $x' = x-x_0$ and $y' = y-y_0$.

	Centre in (0,0)	Centre in (xo,yo)
Circle	A circle consists of the points $P(x,y)$ having a constant	In K' a circle with centre in $(x',y') = (0,0)$ and
	distance r to a given centre $C = P1(0,0)$:	radius r is predicted by $x^{2} + y^{2} = r^{2}$.
	$x^2 + y^2 = r^2$ (= IPCI ²). The tangent passing	In K the circle is predicted by $(x-x1)^2+(y-y1)^2$
	through P(xo,yo) is predicted by $x^*xo + y^*yo = r^2$.	$=$ r^2.
Ellipse	An ellipse consists of the points $P(x,y)$ having a	In K' an ellipse with centre in $(x',y') = (0,0)$ and
	constant distance-sum to two given centres B1 and B2	major and minor axis b and c is predicted by
	(the foci). An ellipse has a horizontal major axis b and a	$(x'/b)^{2} + (y'/c)^{2} = 1$. In K the ellipse is
	vertical minor axis c: $(x/b)^2 + (y/c)^2 = 1$.	predicted by $((x-x1)/b)^2 + ((y-y1)/c)^2 = 1$.
	The tangent passing through P(xo,yo) is predicted by	The tangent passing through P(xo,yo) is predicted
	$x^* xo/(b^2) + y^* yo/(c^2) = 1.$	by $(x-x1)*xo/(b^2) + (y-y1)*yo/(c^2) = 1$.
Hyperbola	A hyperbola consists of the points $P(x,y)$ having a	In K' an hyperbola with centre in $(x',y') = (0,0)$
	constant distance-difference to two given centres B1	and major and minor axis b and c is predicted by
	and B2 (the foci). An hyperbola has a horizontal major	$(x'/b)^2 - (y'/c)^2 = 1$. In K the hyperbola is
	axis b and a vertical minor axis $c: (x/b)^2 - (y/c)^2 = 1$.	predicted by $((x-x1)/b)^2 - ((y-y1)/c)^2 = 1$.
	The tangent passing through P(xo,yo) is predicted by	The tangent passing through P(xo,yo) is predicted
	$x^*xo/(b^2) - y^*yo/(c^2) = 1$. When a hyperbola is	by $(x-x1)*xo/(b^2) - (y-y1)*yo/(c^2) = 1$.
	turned 45 degrees, its equation becomes $y = k/x$.	
Parabola	A parabola consists of the points $P(x,y)$ having the same	In K' an parabola with vertex in $(x',y') = (0,0)$
	distance to a given centre, the focus, and a given line,	and parameter $p = 1/a$ is predicted by $y' = a^*x'^2$.
	the directrix. The parameter p is twice the distance	In K the ellipse is predicted by $y-y1=a^{*}(x-x1)^{2}$.
	between the focus and the line. A vertical parabola is	This can be transformed to: $y = y+a^{*}(x^{2}+x1^{2})$
	predicted by $y = a^* x^2$ having the parameter $p = 1/a$.	$-2^*x^*x^{1}) = a^*x^2 + (-2^*a^*x^{1})^*x + (y^{1}+a^*x^{1})^{2}$
	The tangent passing through P(xo,yo) is predicted by	$= a^* x^2 + b^* x + c \ (\#)$
	$\mathbf{y} + \mathbf{y}\mathbf{o} = 2^* \mathbf{a}^* \mathbf{x}\mathbf{o}^* \mathbf{x}.$	

(#) Since -2*a*xo = b, xo = -b/(2*a). Since $yo + a*xo^2 = c$, $yo = c - a*xo^2 = c - a*b^2/(4*a^2) = -(b^2 - 4*a*c)/4*a = -D/4*a$. In K the parabola vertex has the coordinates $(x_0, y_0) = (-b/(2*a), -D/(4*a))$, where the discriminant $D = b^2 - 4*a*c$. Thus the intersection points between a parabola and the x-axis is $xo \pm \Delta x$, where $a^*\Delta x^2 = D/(4^*a)$ giving $x = (-b \pm \sqrt{D})/(2^*a)$. **Example.** What is the intersection points between $x^2-14*x+y^2+6*y+33=0$ and x-2*y-8=0?

 $x^{2}-14*x+y^{2}+6*y+33=0$ gives $x^{2}-2*7x+7^{2}+y^{2}+2*3y+3^{2}=-33+7^{2}+3^{2}$ or $(x-7)^{2}+(y+3)^{2}=25=5^{2}$ i.e. a circle with centre (7,-3) and radius 5. $x-2^{*}y-8=0$ gives $x-8=2^{*}y$ or $\frac{1}{2^{*}}x-4=y$ i.e. a line with slope $\frac{1}{2}$ and y-intercept -4. Inserting x=2*y+8 is in $x^2-14*x+y^2+6*y+33=0$ gives $(2y+8)^2-14(2y+8)+y^2+6y+33=0$ or $5y^2+10y-15=0$ having the solutions $y=(-10\pm\sqrt{(10^2-4*5^*(-15))}/(2*5) = 1 \& -3$ giving x = 10 & 2. Intersection points: (x,y) = (10,1) & (2,-3). **Exercise.** Predict & construct the intersections points between a conic section and a conic section or a line.

8 FITTNG CURVES

Question. How can we fit curves to points? Answer. By Excel trend lines or solving equations.

2 points. Through 2 points pass infinitely many 2nd degree polynomials (parabolas) but only 1 line.
3 points. Through 3 points pass infinitely many 3rd degree polynomials but only 1 2nd degree polynomial. **4 points.** Through 4 points pass infinitely many 4^{th} degree but only 1 3^{rd} degree polynomial y = $a^*x^3+b^*x^2$ +c*x+d. d is the initial level, c is the initial slope, b is the initial curvature and a is the counter-curvature. a, b, c and d can be predicted by solving 4 equations with med 4 unknown or by the Excel trend line.

Exercise. Try other examples of curve fitting by editing the Excel-window.