Revision Problems Using TI-89

Problem 1. Linear model

Equation:	$y=a x+b$
	$y=x+9$, found by data/matrix- editor, F5, linear regression
Test	$y \mid x=3$ gives 12

$\mathrm{y}=?$	$\mathrm{y}=\mathrm{x}+9$
$\mathrm{x}=10$	$\mathrm{y}=19$ found by $\mathrm{y}(10)$
Test	$\mathrm{y}=19$ found by Graph F5 value

$x=?$	$y=x+9$
$y=40$	$x=31$ found by $F 2$, solve $(y 1(x)=40, x)$
Test	$y \mid x=31$ gives 40

Exponential model

Equation:	$\mathrm{y}=\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}$
	$\mathrm{y}=9.671^{*} 1.075^{\wedge} \mathrm{x}$ found by data/matrix-editor, $\mathrm{F5}$, exponential regression
Test	$\mathrm{y} \mid \mathrm{x}=3$ gives 12

$y=?$	$y=9.671^{*} 1.075^{\wedge} x$
$x=10$	$\mathrm{y}=19.853$ found by $\mathrm{y}(10)$
Test	$\mathrm{y}=19.853$ found by Graph F5 value

$\mathrm{x}=?$	$\mathrm{y}=9.671 * 1.075^{\wedge} \mathrm{x}$
$\mathrm{y}=40$	$\mathrm{x}=19.740$ found by F2, solve $(\mathrm{y} 1(\mathrm{x})=40, \mathrm{x})$
Test	$\mathrm{y} \mid \mathrm{x}=19.740$ gives 40

Doubling time $\mathrm{T}=\log 2 / \log b=\log 2 / \log 1.075=9.6$
Power model

Equation:	$\mathrm{y}=\mathrm{a}^{*} \mathrm{x}^{\wedge} \mathrm{b}$
	$\mathrm{y}=8.264^{*} \mathrm{x}^{\wedge} 0.340$ found by data/matrix-editor, F5, power regression
Test	$\mathrm{y} \mid \mathrm{x}=3$ gives 12

$y=?$	$y=8.264 * x^{\wedge} 0.340$
$x=10$	$y=18.060$ found by $y(10)$
Test	$\mathrm{y}=18.060$ found by Graph F5 value

Problem 2. Quadratic model

Equation:	$\mathrm{y}=\mathrm{a}^{*} \mathrm{x}^{\wedge} 2+\mathrm{b}^{*} \mathrm{x}+\mathrm{c}$
	$\mathrm{y}=-0.048 \mathrm{x}^{\wedge} \wedge+1.476 \mathrm{x}+8$ found by data/matrix-editor, $\mathrm{F5}$, quadratic regression
Test	$\mathrm{y} \mid \mathrm{x}=3$ gives 12

Maximu m:	$\mathrm{y}=-0.048 \mathrm{x}^{\wedge} 2+1.476 \mathrm{x}+8$
	$(\mathrm{x}, \mathrm{y})=(15.500,19.140)$ found by graph, F5, maximum
Test	Solve(dy/dx=0,x) gives 15.5 $\mathrm{y} \mid \mathrm{x}=15.5$ gives 19.14

Tangent	$\mathrm{y}=-0.048 \mathrm{x}^{\wedge} 2+1.476 \mathrm{x}+8$
$\mathrm{x}=2$	$\mathrm{y}=1.286 \mathrm{x}+8.190$ found by graph, F5, tangent

Area formula:	$y=-0.048 x^{\wedge} 2+1.476 x+8$
$x=2$	$\mathrm{ydx}=-0.016^{*} \mathrm{x}^{\wedge} 3+$ $0.738^{*} \mathrm{x}^{\wedge} 2+8.000^{*} \mathrm{x}$ found by F3, integrate Test $\mathrm{d}(\mathrm{ydx}) / \mathrm{dx}=-0.048 \mathrm{x}^{\wedge} 2+1.476 \mathrm{x}+8$

$\mathrm{x}=?$	$\mathrm{y}=8.264^{*} \mathrm{x}^{\wedge} 0.340$
$\mathrm{y}=40$	$\mathrm{x}=104.024$ found by F2, solve $\mathrm{y} 1(\mathrm{x})=40, \mathrm{x})$
Test	$\mathrm{y} \mid \mathrm{x}=104.024$ gives 40

$y=?$	$y=-0.048 x^{\wedge} 2+1.476 x+8$
$x=15$	$y=19.429$ found by $y(15)$
Test	$y=19.429$ found by Graph F5 value

$\mathrm{x}=?$	$\mathrm{y}=-0.048 \mathrm{x}^{\wedge} 2+1.476 \mathrm{x}+8$
$\mathrm{y}=40$	$\mathrm{x}=1.420$ or 29.580 found by F2, solve $(\mathrm{y} 1(\mathrm{x})=40, \mathrm{x})$
Test	$\mathrm{y} \mid \mathrm{x}=1.420$ gives 40 $\mathrm{y} \mid \mathrm{x}=29.580$ gives 40

Gradient formula	$y=-0.048 x^{\wedge} 2+1.476 x+8$
	$y^{\prime}=-0.095^{*} x+1.476$, found by F3, differentiate
Test	Jy $y^{\prime} \mathrm{d}=-0.048 x^{\wedge} 2+1.476 x$

Area number:	$\mathrm{y}=-0.048 \mathrm{x}^{\wedge} 2+1.476 \mathrm{x}+8$
	$\int_{\mathrm{ydx}}=62.421$, 1 found by F3, $\int(\mathrm{y} 1(\mathrm{x}), \mathrm{x}, 1,6)$
Test	62.421, found by graph, F5, integrate

Intersection points	$y=-0.048 x^{\wedge} 2+1.476 x+8$ and $y=3+2 x$
$\mathrm{x}=5$	$(\mathrm{x}, \mathrm{y})=(-17.130,-31.260)$ and
	$(x, y)=(6.130,15.260)$,
	found by F2, solve $(\mathrm{yl}(\mathrm{x})=3+2 \mathrm{x}, \mathrm{x})$ and $\mathrm{y} 1(\mathrm{x}) \mid \mathrm{x}=-17.130$ etc.
Test	tested by graph, F5, intersection.

Problem 3. Cubic model

Equation:	$y=a^{*} x^{\wedge} 3+b^{*} x^{\wedge} 2+c^{*} x+d$
	$y=0.086 x^{\wedge} 3-$ $1.952 x^{\wedge} 2+13.752 x-14$ found by data/matrix-editor, F5, quadratic regression
Test	$y \mid x=3$ gives 12

Maximum Minimum:	$\mathrm{y}=0.086 \mathrm{x}^{\wedge} 3-1.952 \mathrm{x}^{\wedge} 2+13.752 \mathrm{x}-14$
	Max: $(\mathrm{x}, \mathrm{y})=(5.552,16.841)$ found by graph, F5, maximum Min: (x,y) $)=(9.634,13.925)$ found by graph, 55, minimum
Test	Solve(dy/dx $=0, \mathrm{x})$ gives 5.552 and 9.634 $\mathrm{y} \mid \mathrm{x}=5.552$ gives 16.841 $\mathrm{ylx}=9.634$ gives 13.925

$y=?$	$y=0.086 x^{\wedge} 3-1.952 x^{\wedge} 2$ $+13.752 x-14$
$x=15$	$y=42.286$ found by $y(15)$
Test	$\mathrm{y}=42.286$ found by Graph F5 value

Tangent	$y=0.086 x^{\wedge} 3-$ $1.952 x^{\wedge} 2+13.752 x-14$
$x=2$	$y=6.971 x-7.562$ found by graph, F5, tangent

$\mathrm{x}=?$	$\mathrm{y}=0.086 \mathrm{x}^{\wedge} 3-1.952 \mathrm{x}^{\wedge} 2$ $+13.752 \mathrm{x}-14$
$\mathrm{y}=30$	$\mathrm{x}=13.885$ found by F2, solve(y1 $(\mathrm{x})=30, \mathrm{x})$
Test	$\mathrm{y} \mid \mathrm{x}=13.885$ gives 30

Gradient formula	$\begin{aligned} & y=0.086 x^{\wedge} 3- \\ & 1.952 x^{\wedge} 2+13.752 x-14 \end{aligned}$
	$\begin{aligned} & \hline y^{\prime}=0.257^{*} x^{\wedge} 2- \\ & 3.905^{*} x+13.752, \\ & \text { found by F3, differentiate } \end{aligned}$
Test	$\begin{aligned} & \hline \mathrm{y} \wedge \mathrm{dx}=0.086 \mathrm{x}^{\wedge} 3- \\ & 1.952 x^{\wedge} 2+13.752 \mathrm{x} \end{aligned}$

Gradient number:	$\begin{aligned} & y=0.086 x^{\wedge} 3- \\ & 1.952 x^{\wedge} 2+13.752 x-14 \end{aligned}$	Area formula:	$\begin{aligned} & y=0.086 x^{\wedge} 3- \\ & 1.952 x^{\wedge} 2+13.752 x-14 \end{aligned}$	Area number:	$\begin{array}{\|l} y=0.086 x^{\wedge} 3- \\ 1.952 x^{\wedge} 2+13.752 x-14 \end{array}$
$\mathrm{x}=5$	$\begin{aligned} & \mathrm{y} \text { '(5) }=0.657 \\ & \text { found by graph, F5, dy/dx } \end{aligned}$	$x=2$	$\begin{aligned} & \operatorname{lydx}=0.021^{*} x^{\wedge} 4- \\ & 0.651^{*} x^{\wedge} 3+6.876^{*} x^{\wedge} 2+14^{*} x \\ & \text { found by F3, integrate } \end{aligned}$		$\begin{aligned} & 6 \\ & \int_{\mathrm{ydx}}=58.496, \\ & 1 \\ & \text { found by F3, } \mathrm{f}(\mathrm{yl}(\mathrm{x}), \mathrm{x}, 1,6) \end{aligned}$
Test	$\mathrm{y}^{\prime} \mathrm{x}=5$ gives 0.657	Test	$\begin{aligned} & \hline \mathrm{d}(\mathrm{Jdx}) / \mathrm{dx}=0.086 \mathrm{x}^{\wedge} 3- \\ & 1.952 \mathrm{x}^{\wedge} 2+13.752 \mathrm{x}-14 \end{aligned}$	Test	58.496 , found by graph, F5, integrate

Intersection points with $\mathrm{y}=3+2 \mathrm{x}:(\mathrm{x}, \mathrm{y})=(2.129,-7.259)$ and $(\mathrm{x}, \mathrm{y})=(6.657,16.315)$ and $(\mathrm{x}, \mathrm{y})=(13.991,30.981)$ found by F2, solve ($\mathrm{y} 1(\mathrm{x})=3+2 \mathrm{x}, \mathrm{x}$), tested by graph, F5, intersection.

Problem4

Solutions: $(x, y)=(3.632,1.027)$, found by F2, solve $(3 x+4 y=15$ and $5 x-6 y=12,\{x, y\})$.
Tested by $A * B=C, B=A^{\wedge}-1 * C=\binom{3.632}{1.027}$, hvor $A=\left(\begin{array}{cc}3 & 4 \\ 5 & -6\end{array}\right)$ og $B=\binom{x}{y}$ og $C=\binom{15}{12}$.
Problem5

Midpoint:	$(\mathrm{x}, \mathrm{y})=\left(\frac{\mathrm{x} 1+\mathrm{x} 2}{2}, \frac{\mathrm{y} 1+\mathrm{y} 2}{2}\right)$	Gradient PQ:	$\mathrm{a}=\frac{\mathrm{y} 2-\mathrm{y} 1}{\mathrm{x} 2-\mathrm{x} 1}$	Line PQ:	$y=y 1+a^{*}(x-x 1)$	
$\begin{aligned} & \mathrm{x} 1=2 \\ & \mathrm{x} 2=6 \\ & \mathrm{y} 1=4 \\ & \mathrm{y} 2=10 \end{aligned}$	$(x, y)=(4,7)$ found by $\left.\left(\frac{x 1+x 2}{2}, \frac{y 1+y 2}{2}\right) \right\rvert\, x 1=2 \text { and } x 2=6$ and $y 1=4$ and $y 2=10$	$\begin{aligned} & \mathrm{x} 1=2 \\ & \mathrm{x} 2=6 \\ & \mathrm{y} 1=4 \\ & \mathrm{y} 2=10 \end{aligned}$	$\begin{aligned} & a=3 / 2 \\ & \text { found by } \left.\frac{y 2-y 1}{x 2-x 1} \right\rvert\, x 1=2 \text { and } \\ & x 2=6 \text { and } y 1=4 \text { and } y 2=10 \end{aligned}$	$\begin{aligned} & \mathrm{a}=3 / 2 \\ & \mathrm{x} \mathrm{l}=2 \\ & \mathrm{y} \mathrm{l}=4 \end{aligned}$		$\begin{aligned} & 1.5^{*} x+1 \\ & d \text { by } y 2+a^{*}(x- \\ & x 1=2 \text { and } y 1=4 \text { and } \end{aligned}$
Test	Tested geometrically	Test	Tested geometrically	Test		geometrically
Gradient perpend.:	$c^{*} \mathrm{a}=-1 \quad$ Normal:	$y=y 1+a^{*}(x$	-x1)	Distance PQ	$d=\sqrt{ }$	$(2-x 1)^{2}+(y 2-y 1)^{2}$
$a=3 / 2$	$\mathrm{c}=-2 / 3$ found by solve $\left(c^{*} 3 / 2=-1, c\right)$ $\mathrm{x}=-2 / 3$	$\begin{aligned} & \mathrm{y}=-2 / 3^{*} \mathrm{x}+ \\ & \text { found by } \mathrm{y} 2+\mathrm{a}^{*} \\ & \mathrm{a}=-3 / 2 \end{aligned}$	$\begin{aligned} & 5.333 \\ & a^{*}(x-x 2) \times 1=2 \text { and } y 1=4 \text { and } \end{aligned}$	$\begin{aligned} & \hline \mathrm{x} 1=2 \\ & \mathrm{x} 2=6 \\ & \mathrm{y} 1=4 \\ & \mathrm{y} 2=10 \end{aligned}$	$\begin{aligned} & \hline \mathrm{d}=7.21 \\ & \text { found by } \\ & \sqrt{(x 2-x 1} \\ & x 2=6 \text { and } \end{aligned}$	$\begin{aligned} & y^{2}+(y 2-y 1)^{2} \mid x 1=2 \text { and } \\ & y 1=4 \text { and } y 2=10 \end{aligned}$
Test	Tested geometrically \quad Test	Tested geometri		Test	Tested	metrically
Distance point-line	$\mathrm{d}=\frac{\left\|\mathrm{c} 2-\mathrm{a}^{*} \mathrm{c} 1-\mathrm{b}\right\|}{\sqrt{1+\mathrm{a}^{2}}}$	Circle equation	$(x-c 1)^{2}+(y-c 2)^{2}=r^{2}$	Inters	section	$\begin{aligned} & (x-c 1)^{2}+(y-c 2)^{2}=r^{2} \\ & \text { and } y=12-2 x \end{aligned}$
$\begin{aligned} & a=1.5 \\ & b=1 \\ & x 1=8 \\ & y 1=1 \end{aligned}$	$\begin{aligned} & \mathrm{d}=6.66 \\ & \text { found by } \left.\mathrm{d}=\frac{\mathrm{cc} 2-\mathrm{a}^{*} \mathrm{c} 1-\mathrm{b} \mid}{\sqrt{1+\mathrm{a}^{2}}} \right\rvert\, \mathrm{x} 1=8 \end{aligned}$ and $\mathrm{y} 1=1$ and $\mathrm{a}=1.5$ and $\mathrm{b}=1$	$\begin{aligned} & \mathrm{r}=1 / 2 * 7.21 \\ & \mathrm{r}=3.61 \\ & \mathrm{c} 1=4 \\ & \mathrm{c} 2=7 \end{aligned}$	$\begin{aligned} & (x-4)^{2}+(y-7)^{2}=13.03 \\ & \text { found by } \\ & (x-c 1)^{2}+(y-c 2)^{2}=r^{2} \mid c 1=4 \text { and } \\ & c 2=7 \text { and } r=3.61 \end{aligned}$	$\begin{aligned} \mathrm{r} & =1 / 2^{*} \\ = & 3.6 \\ \mathrm{c} 1 & =4 \\ \mathrm{c} 2 & =7 \end{aligned}$	$\begin{aligned} & * 7.21 \\ & 61 \end{aligned}$	$\begin{array}{\|l} \hline(\mathrm{x}, \mathrm{y})=(1.30,9.40) \text { and } \\ (4.30,3.40) \\ \text { found by } \\ \text { solve }\left((\mathrm{x}-4)^{2}+(\mathrm{y}-7)^{2}=\right. \\ 13.03, \mathrm{x}) \mid \mathrm{y}=12-2 \mathrm{x} \\ \hline \end{array}$
Test	Tested geometrically	Test	$\begin{aligned} & (7.61-4)^{2}+(7-7)^{2}=13.03 \\ & 13.03=13.03 \end{aligned}$	Test		Tested geometrically

Angle: $\tan (v)=a, a=3 / 2 ; v=56.31$ found by solve $(\tan v=3 / 2, v) \mid v>0$ and $v<90$. Tested geometrically

Problem7
$\mathrm{p}(\mathrm{X}<115)=0.894$, found by normCdf($-\infty, 115,100,12$) $\mathrm{p}(\mathrm{X}<89)=0.180$, found by normCdf $(-\infty, 89,100,12)$
$p(X>108)=0.253$, found by normCdf($108, \infty, 100,12)$ $\mathrm{p}(93<\mathrm{X}<109)=0.494$, found by normCdf($93,109,100,12)$

Problem8

$\mathrm{p}(\mathrm{X}<70)=0.827$, found by binomCdf($100,0.65,0,69)$
$\mathrm{p}(\mathrm{X} \leq 60)=0.172$, found by binomCdf($100,0.65,0,60)$
$\mathrm{p}(\mathrm{X} \geq 58)=0.941$, found by binomCdf $(100,0.65,58,100)$
$\mathrm{p}(63<\mathrm{X} \leq 72)=0.571$, found by binomCdf($100,0.65,64,72)$

Problem9

$\mathrm{x}=?$	$\operatorname{Sin}(3 \mathrm{x})=0.4$
	$\mathrm{X}=0.137$, or 0.910, or
	2.232 or 3.004 or 4.326 or
	5.099
	found by solve $(\operatorname{Sin}(3 \mathrm{x})=0.4, \mathrm{x})$
	$\mid \mathrm{x}>0$ and $\mathrm{x}<2 \pi$
Test	$\operatorname{Sin}(3 \mathrm{x}) \mathrm{x}=0.137$ gives 0.4 etc.

$\mathrm{x}=?$	$\cos (1 / 2 \mathrm{x})=-0.3$
	$\mathrm{X}=3.745$ found by solve $(\cos (1 / 2 x)=-0.3, \mathrm{x}) \mid \mathrm{x}>0$ and $\mathrm{x}<2 \pi$
Test	$\cos (1 / 2 \mathrm{x}) \mid \mathrm{x}=3.745$ gives -0.3

$\mathrm{x}=$?	$\tan (2 \mathrm{x})=0.7$
	$\mathrm{X}=0.305$, or 1.876 , or 3.447 or 5.018 found by solve $(\cos (1 / 2 x)=-0.3, x)$ $\mid x>0$ and $x<2 \pi$
Test	$\tan (2 \mathrm{x}) \mid \mathrm{x}=0.305$ gives 0.37 etc.

Problem 10

$\mathrm{a}=?$	$\tan \mathrm{~A}=\mathrm{a} / \mathrm{b}$
$\mathrm{A}=40$	$\mathrm{a}=5.874$
$\mathrm{~b}=7$	found by solve $(\tan 40=\mathrm{a} / 7, \mathrm{~b})$
Test	$\tan 40=5.874 / 7$
	$0.839=0.839$

$\mathrm{B}=?$	$\mathrm{~A}+\mathrm{B}=90$
$\mathrm{~A}=40$	$\mathrm{B}=50$ found by solve(40+B=90,B)
Test	$50+40=90$ $90=90$

Problem 11

$\mathrm{b}=?$	$\mathrm{a}^{\wedge} 2+\mathrm{b}^{\wedge} 2=\mathrm{c}^{\wedge} 2$
$\mathrm{a}=4$	$\mathrm{~b}=5.745$
$\mathrm{c}=7$	found by solve $\left(4^{\wedge} 2+\mathrm{b}^{\wedge} 2=7 \wedge 2, \mathrm{~b}\right)$
Test	$4^{\wedge} 2+5.745^{\wedge} 2=7 \wedge 2$ $49=49$

$\mathrm{A}=?$	$\sin \mathrm{~A}=\mathrm{b} / \mathrm{c}$
$\mathrm{a}=4$	$\mathrm{~A}=34.85$
$\mathrm{c}=7$	found by solve $(\sin \mathrm{A}=4 /, \mathrm{A})$
Test	$\operatorname{Sin} 34.85=4 /$ $0.571=0.571$

$\mathrm{B}=?$	$\mathrm{~A}+\mathrm{B}=90$
$\mathrm{~A}=$	$\mathrm{B}=55.15$
34.85	found by solve $(34.85+\mathrm{B}=90, \mathrm{~B})$
Test	$34.85+55.15=90$ $90=90$

Problem 12

$\mathrm{B}=?$	$\mathrm{~A}+\mathrm{B}+\mathrm{C}=180$
$\mathrm{~A}=40$	$\mathrm{~B}=72$
$\mathrm{C}=68$	found by solve($40+\mathrm{B}+68=180, \mathrm{~B})$
Test	$40+72+68=180$ $180=180$

$\mathrm{a}=?$	$\mathrm{a} / \sin \mathrm{A}=\mathrm{b} / \sin \mathrm{B}$
$\mathrm{A}=40$	$\mathrm{a}=4.731$
$\mathrm{~B}=72$	found by solve $(\mathrm{a} / \sin 40=$
$\mathrm{b}=7$	$7 / \sin 72, \mathrm{a})$
Test	$4.731 / \sin 40=7 / \sin 72$
	$7.360=7.360$

$\mathrm{c}=?$	$\mathrm{c} / \sin \mathrm{C}=\mathrm{b} / \sin \mathrm{B}$
$\mathrm{C}=68$	$\mathrm{c}=6.824$
$\mathrm{~B}=72$	found by solve $(\mathrm{c} / \sin 68=7 / \sin 72, \mathrm{c})$
$\mathrm{b}=7$	
Test	$6.824 / \sin 68=7 / \sin 72$
	$7.360=7.360$

Problem 13

$\mathrm{a}=?$	$\mathrm{a}^{2}=\mathrm{c}^{2}+\mathrm{b}^{2}-2 * \mathrm{c}^{*} \mathrm{~b}^{*} \cos \mathrm{~A}$
$\mathrm{~A}=40$	$\mathrm{a}=4.724$
$\mathrm{c}=6.8$	found by
$\mathrm{b}=7$	solve $\left(\mathrm{a}^{2}=6.8^{2}+7^{2}-2 * 6.8 * 7 * \cos 40, \mathrm{a}\right)$
Test	$4.724^{2}=6.8^{2}+7^{2}-2 * 6.8^{*} 7 * \cos 40$
	$22.316=22.316$

$\mathrm{B}=?$	$\mathrm{a} / \sin \mathrm{A}=\mathrm{b} / \sin \mathrm{B}$
$\mathrm{A}=40$	$\mathrm{~B}=72.3$
$\mathrm{~b}=7$	found by
$\mathrm{a}=4.724$	solve $(4.724 / \sin 40=7 / \sin \mathrm{B}, \mathrm{B})$
Test	$4.724 / \sin 40=7 / \sin 72.3$
	$7.348=7.348$

$\mathrm{C}=?$	$\mathrm{~A}+\mathrm{B}+\mathrm{C}=180$
$\mathrm{~A}=40$	$\mathrm{C}=67.7$ found by solve $(40+72.3+\mathrm{C}=180, \mathrm{C})$
Test	$40+72.3+67.7=180$ $180=180$

Problem 14

$\mathrm{B}=$?	$\mathrm{a} / \sin \mathrm{A}=\mathrm{b} / \mathrm{sin} \mathrm{B}$	$\mathrm{C}=$?	$\mathrm{A}+\mathrm{B}+\mathrm{C}=180$	$\mathrm{c}=$?	$a / \sin \mathrm{A}=\mathrm{c} / \sin \mathrm{C}$
$\begin{aligned} & \hline \mathrm{A}=40 \\ & \mathrm{a}=6.2 \\ & \mathrm{~b}=7 \end{aligned}$	$\begin{aligned} & \mathrm{B}=46.53 \text { or } \mathrm{B}=133.47 \\ & \text { found by } \\ & \text { solve(} 6.2 / \sin 40=7 / \sin \mathrm{B}, \mathrm{~B}) \mid \mathrm{B}>0 \text { and } \mathrm{B}< \\ & 180 \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}=40 \\ & \mathrm{~B}=46.53 \\ & \text { or } \\ & \mathrm{B}=133.47 \end{aligned}$	$\begin{aligned} & \mathrm{C}=93.47 \text { or } \mathrm{C}=6.53 \\ & \text { found by } \\ & \text { solve } 40+\mathrm{B}+\mathrm{C}=180, \mathrm{C}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}=40 \\ & \mathrm{a}=6.2 \\ & \mathrm{C}=93.47 \\ & \text { or } \\ & \mathrm{C}=6.53 \end{aligned}$	$\begin{aligned} & \mathrm{c}=9.628 \text { or } \mathrm{C}=1.097 \\ & \text { found by } \\ & \text { solve }(6.2 / \sin 40=c / \sin \mathrm{C}, \mathrm{c}) \end{aligned}$
Test	$\begin{aligned} & 6.2 / \sin 40=7 / \sin 46.53=7 / \sin 133.47 \\ & 9.645=9.645=9.645 \end{aligned}$	Test	$\begin{aligned} & 40+46.53+93.47=180 \\ & 180=180 \end{aligned}$	Test	$\begin{aligned} & 6.2 / \sin 40=9.628 / \sin 93.47=9.628 / \sin 6.53 \\ & 9.645=9.645=9.645 \end{aligned}$

Problem 15

A = ?	$a^{2}=c^{2}+b^{2}-2 * c^{*} b^{*} \cos A$	$\mathrm{B}=$?	$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 * \mathrm{a}^{*} \mathrm{c}^{*} \cos \mathrm{~B}$	$\mathrm{C}=$?	$\mathrm{A}+\mathrm{B}+\mathrm{C}=180$
$\mathrm{a}=4$	$\mathrm{A}=33.66$	$\mathrm{a}=4$	$\mathrm{B}=75.91$	A $=33.66$	$\mathrm{C}=70.43$
$\mathrm{c}=6.8$	found by solve $\left(4^{2}=6.8^{2}+7^{2}-\right.$	$\mathrm{c}=6.8$	found by solve $\left(7^{2}=4^{2}+6.8^{2}-\right.$	$\mathrm{B}=75.91$	found by
$\mathrm{b}=7$	$2 * 6.8 * 7 * \cos \mathrm{~A}, \mathrm{~A})$	$\mathrm{b}=7$	$2 * 6.8 * 4 * \cos \mathrm{~B}, \mathrm{~B})$		solve(33.66+75.91+C=180,C)
Test	$\begin{aligned} & 4^{2}=6.8^{2}+7^{2}-2 * 6.8 * 7 * \cos 33.66 \\ & 16=16 \end{aligned}$	Test	$\begin{aligned} & 7^{2}=4^{2}+6.8^{2}-2 * 6.8 * 4 * \cos 75.91 \\ & 49=49 \end{aligned}$	Test	$\begin{aligned} & 33.66+75.91+70.43=180 \\ & 180=180 \end{aligned}$

Problem16

$\mathrm{d}=$?	$\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}$	$\mathrm{e}=$?	$\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}$	$\mathrm{f}=$?	$\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}$	$\mathrm{g}=$?	$\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}$
	$\mathrm{d}=(\mathrm{e}-\mathrm{f})^{*} \mathrm{t}-(\mathrm{e}-\mathrm{f})^{*} \mathrm{~g}$ found by $\operatorname{solve}\left(\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}, \mathrm{~d}\right)$		$\mathrm{e}=\frac{\mathrm{f}^{*} \mathrm{t}+\mathrm{d}-\mathrm{f}^{*} \mathrm{~g}}{\mathrm{t}-\mathrm{g}}$ found by $\operatorname{solve}\left(\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}, \mathrm{e}\right)$		$\mathrm{f}=\frac{\mathrm{e}^{*} \mathrm{t}-\mathrm{d}-\mathrm{e}^{*} \mathrm{~g}}{\mathrm{t}-\mathrm{g}}$ found by $\operatorname{solve}\left(\mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g}, \mathrm{f}\right)$		$g=\frac{(e-f)^{*} t-d}{e-f}$ found by $\operatorname{solve}\left(T=\frac{d}{e-f}+g, g\right)$
Test	$\begin{aligned} & \text { Solve }\left(\mathrm{d}=(\mathrm{e}-\mathrm{f}) * \mathrm{t}-(\mathrm{e}-\mathrm{f})^{*} \mathrm{~g}, \mathrm{t}\right) \\ & \text { gives } \mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g} \end{aligned}$	Test	$\begin{aligned} & \text { Solve }\left(e=\frac{f^{*} t+d-f^{*} g}{t-g}, t\right) \\ & \text { gives } T=\frac{d}{e-f}+g \end{aligned}$	Test	$\begin{aligned} & \text { Solve }\left(\mathrm{f}=\frac{\mathrm{e}^{*} \mathrm{t}-\mathrm{d}-\mathrm{e}^{\pi g}}{\mathrm{t}-\mathrm{g}}, \mathrm{t}\right) \\ & \text { gives } \mathrm{T}=\frac{\mathrm{d}}{\mathrm{e}-\mathrm{f}}+\mathrm{g} \end{aligned}$	Test	$\begin{aligned} & \text { Solve }\left(g=\frac{(e-f)^{x} t-d}{e-f}, t\right) \\ & \text { gives } T=\frac{d}{e-f}+g \end{aligned}$

Problems 17-19

$\mathrm{y}=?$	$\mathrm{y}=\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}$
$\mathrm{a}=785$	$\mathrm{y}=896.85$
$\mathrm{~b}=1.027$	found by
$\mathrm{x}=5$	solve $\left(\mathrm{y}=785^{*} 1.027^{\wedge} 5, \mathrm{y}\right)$
Test	$785^{*} 1.027^{\wedge} 5$ gives 896.85
$\mathrm{~T}=\ln (2) / \ln (1.027)=26.0$	

$\mathrm{x}=?$	$\mathrm{y}=\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}$	
$\mathrm{a}=785$	$\mathrm{x}=8.3$	
$\mathrm{~b}=1.027$	found by	
$\mathrm{y}=980$	solve $\left(980=785^{*} 1.027^{\wedge} \mathrm{x}, \mathrm{x}\right)$	
Test	$785^{*} 1.027^{\wedge} \mathrm{x} \mid \mathrm{x}=8.3$ gives 980	
$=\ln (2) / \ln (1.027)=26.0$	$\mathrm{~T}=$	

$\mathrm{b}=?$	$\mathrm{y}=\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}$
$\mathrm{a}=785$	$\mathrm{~b}=1.045=1+4.5 \%$
$\mathrm{y}=980$	found by solve $\left(980=785^{*} \mathrm{~b}^{\wedge} 5, \mathrm{~b}\right)$
$\mathrm{x}=5$	
Test	$785^{*} \mathrm{~b}^{\wedge} 5 \mid \mathrm{b}=1.045$ gives 980

Problems 20-22

$\mathrm{y}=?$	$\mathrm{y}=\mathrm{a} * \mathrm{x}+\mathrm{b}$
$\mathrm{b}=785$	$\mathrm{y}=798.5$
$\mathrm{a}=2.7$	found by
$\mathrm{x}=5$	solve $(\mathrm{y}=2.7 * 5+785, \mathrm{y})$
Test	$2.7 * 5+785$ gives 798.5

$\mathrm{x}=?$	$\mathrm{y}=\mathrm{a}^{*} \mathrm{x}+\mathrm{b}$
$\mathrm{b}=785$	$\mathrm{x}=72.2$
$\mathrm{a}=2.7$	found by solve $(980=2.7 * \mathrm{x}+785, \mathrm{x})$
$\mathrm{y}=980$	
Test	$2.7 * \mathrm{x}+785 \mid \mathrm{x}=72.2$ gives 980

$\mathrm{a}=?$	$\mathrm{y}=\mathrm{a}^{*} \mathrm{x}+\mathrm{b}$
$\mathrm{b}=785$	$\mathrm{a}=39$
$\mathrm{y}=980$	found by solve(980=a*5+785,a)
$\mathrm{x}=5$	
Test	$2.7^{*} \mathrm{x}+785 \mid \mathrm{a}=39$ gives 980

