Math Dislike CURED

by 1 Cup \& 5 Sticks shortversion

My Many Math Tears will not Stay - if I Cup the Stray Away

CupCOUNT before you ADD

$5=\| \| \|=$

III
$=1] 3 \mathbf{2 s}$
$5=\| \| \|=$

$=2] 1 \mathbf{2 s}$
= 3]-1 2s

3 ways to CupCount: Overload, Normal, Underload
ReCount 7 in 3s: $\quad 7=2] 13 s=1] 43 s=3]-2$ 3s
NO, 4×7 is not 28 , it is $47 s=2] 8=1] 18=3]-2$ tens NO, $30 / 6$ is not 30 divided by 6 , it is 3 tens counted in $6 \mathbf{s}$

CupWriting tells InSide Bundles from OutSide 1s

$\bullet \mathbf{6 5 + 2 7}=6] 5+2] 7=8] 12=9] 2=$	$\mathbf{9 2}$	
$\bullet 65-\mathbf{2 7}=6] 5-2] 7=4]-2=3] 8=$	$\mathbf{3 8}$	
$\bullet \mathbf{~} \mathbf{7 \times 4 8}=7 \times 4] 8=28] 56=33] 6=$	$\mathbf{3 3 6}$	
$\bullet \mathbf{3 3 6} / \mathbf{7}$	$=33] 6 / 7=28] 56 / 7=4] 8=$	$\mathbf{4 8}$

MatheMatics as ManyMath - a Natural Science about Many Makes Math Potentials Blossom in Children, Adults \& Migrants Allan.Tarp
MATHeCADEMY.net

MATHeCADEMY.net Cure Math Dislike: Use Children's own 2D Numbers with Units

Count In Icons In BundleCups	
ReCount In same Unit In new Unit	ReBundle to create Overload \& Underload $\left[\begin{array}{l} \mathrm{T}=7=\|\|\|\|\|\| \|=2] 1 \mathbf{3 s}=1] 4 \mathbf{3} \mathbf{s}=3]-2 \mathbf{3 s} \\ \mathrm{T}=2] 1 \mathbf{3 s}=1] 3 \mathbf{4} \mathbf{s}=1] 2 \mathbf{5} \mathbf{s}=3] 1 \mathbf{2 s}=1] 1] 1 \mathbf{s}=11] 1 \mathbf{s} \mathbf{s} \end{array}\right.$
ReCount In Tens From Tens	$37 s=$? tens Answer: $3 \times 7=21=2] 1$ tens ? 7s = 3 tens Answer: $(30 / 7) \times 7=4] 27 s$
DoubleCount in PerNumbers in PerFive, 3/5 in PerHundred, \%	With $4 \$$ per $5 \mathrm{~kg}, \mathrm{~T}=20 \mathrm{~kg}=(20 / 5) \times 5 \mathrm{~kg}=(20 / 5) \times 4 \$=16 \$$ 3 per 5 of $200 \$=? \$$. $200 \$=(200 / 5) \times 5 \$$ gives $(200 / 5) \times 3 \$=120 \$$ 70% of $300 \$=$? $\$.300 \$=(300 / 100) \times 100 \$$ gives $(300 / 100) \times 70 \$=210 \$$
Calculator Prediction RecountFormula	$\begin{array}{\|lrr\|} \mathrm{T}=2 \mathbf{4 s}=\mathbf{5} \mathbf{s}=1] 3 \mathbf{5 s} \text { since } \\ \mathrm{T}=(\mathrm{T} / \mathrm{B}) \times B=\mathrm{T} / \mathrm{B} \text { Bs } & 2 \times 4 / 5 & 1 . \text { some } \\ 2 \times 4-1 \times 5 & 3 \\ \hline \end{array}$
Add NextTo OnTop	$\begin{aligned} & \mathrm{T}=23 \mathrm{~s}+45 \mathrm{~s}=3] 2 \mathbf{8 s} \\ & \mathrm{~T}=23 \mathrm{~s}+45 \mathrm{~s}=1] 15 \mathrm{~s}+45 \mathrm{~s}=5] 15 \mathrm{~s} \end{aligned}$
Multiply, Divide Use CupWriting	$\begin{aligned} & 7 \times 463=7 \times 4] 6] 3=28] 42] 21=28] 44] 1=32] 4] 1=3241 \\ & 3241 / 7=32] 4] 1 / 7=28] 44] 1 / 7=28] 42] 21 / 7=4] 6] 3=463 \end{aligned}$

$\mathrm{T}=7=2 \mathrm{l} 1$ 3s on an Abacus:

Geometry-mode

Algebra-mode

MATHeCADEMY.net

Piaget: Grasping with Fingers leads to Grasping Mentally

Four as an icon built by four cars, four rhinos, four sticks, a ruler folded in four parts, four beads on an abacus, LEGO blocks, pearls on a pearl board, etc.

Seven sticks cup-counted as 1$] 25 \mathrm{~s}$, or as 2$] 13 \mathrm{~s}$ or as 3$] 12 \mathrm{~s}$

The MATHeCADEMY.net stand at the MatematikBiennale in Sweden, 2014

Contents

Preface
Introduction to the Chapters

1. From Sticks to Icons 1
2. Counting in Icons 3
3. CupCounting in Icons 5
4. CupCounting with Dices 6
5. ReCounting in the Same Unit 7
6. ReCounting in a New Unit 8
7. ReCounting in BundleBundles 9
8. ReCounting in Tens on Squared Paper or an Abacus 10
9. ReCounting from Tens 11
10. ReCounting Large Numbers in Tens 12
11. DoubleCounting with PerNumbers 13
12. DoubleCounting with Fractions and Percentages 14
13. ReCounting PerNumbers, Fractions 15
14. Adding OnTop 16
15. Reversed Adding OnTop 17
16. Adding NextTo 18
17. Reversed Adding NextTo 19
18. Adding Tens 20
19. Reversed Adding Tens 21
20. Recounting Solves Equations 22

Preface

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied. That opened my eyes. Children come to school with two-dimensional block numbers where all numbers have units. However, the school does not allow the children to count the numbers before being added. Instead the school teaches cardinality as a one-dimensional number line where numbers have different names; thus disregarding the fact that numbers are two dimensional blocks where all numbers have a unit as shown when writing out fully
$\mathrm{T}=345=3$ BundleBundles +4 Bundles +5 Singles $=3^{*} 10^{\wedge} 2+4^{*} 10+5^{*} 1$.
This booklet allows schools and parents to choose an education that accepts and develops the 2D number blocks that the children bring to school instead of forcing a 1D number line upon them. Also, the booklet allows the children to practice 'counting before adding' and to include cup-counting and re-counting to different units. The booklet thus is an answer to the question 'How to Save and Develop a Child's Math Potential?'
To master Many we ask 'how many?' To answer, we count by bundling and stacking to get a total T. Once counted, first a total can be recounted in the same unit to create overload or underload, or to create a different unit; next totals can be added NextTo, or OnTop if the units are the same.
Counting a total T of 7 ones in 3 s we get the result $\mathrm{T}=7=23 \mathrm{~s} \& 1=2] 13 \mathrm{~s}$.
We separate the inside bundles from the outside unbundled singles by a cup becoming a bracket when reporting the result with cup-writing: $\mathrm{T}=\mathrm{III} \mathrm{III} \mathrm{I}=\mathrm{II}] \mathrm{I}=2] 13 \mathrm{~s}$
Once counted, a total can be recounted to create overload or underload, deficit. To create an overload, we move a stick from the inside to the outside: $\mathrm{T}=\mathrm{I} \mid \mathrm{I}=\mathrm{I}] \| \mathrm{I} \mathrm{I}=1] 43 \mathrm{~s}$.
To create an underload, we borrow foreign sticks to move a bundle from the outside to the inside

$$
T=\|] I=\|]\|\|\|=\| I\|\|=3]-2 \text { 3s. }
$$

Thus a given total can be recounted in three ways: normal, with overload and with underload.

$$
\mathrm{T}=7=2] 13 \mathrm{~s}=1] 43 \mathrm{~s}=3 \mathrm{~J}-2 \mathbf{3 s} .
$$

A total of 68 can be recounted in four different ways as $T=68=6] 8$ tens $=5] 18$ tens $=7]-2$ tens.
Recounting and cup-writing come in handy when we add, subtract, multiply or divide numbers:
Using cup-writing to add 65 and 27 we get an overload outside the bundle cup allowing us to move 10 1s from the outside to the inside as 1 tens

$$
\mathrm{T}=65+27=6] 5+2] 7=8] 12=9] 2=92
$$

Using cup-writing to subtract 27 from 65 we get an underload outside the bundle cup allowing us to move a bundle of 1 tens from the inside to the outside as 101 s to remove the underload.

$$
\mathrm{T}=65-27=6] 5-2] 7=4]-2=3] 8=38
$$

Alternatively, before subtracting we can create an overload outside by moving 1 tens from the inside to the outside as 101 s

$$
\mathrm{T}=65-27=6] 5-2] 7=5] 15-2] 7=3] 8=38
$$

Using cup-writing to multiply 48 with 7 we get an overload outside the bundle cup allowing us to move 50
1s from the outside to the inside as 5 tens

$$
\mathrm{T}=7 * 48=7 * 4] 8=28] 56=33] 6=336
$$

Alternatively, before multiplying we can create an underload outside by borrowing 2 1s. Later the underload can be removed by moving 2 tens outside as 20 1s

$$
\mathrm{T}=7 * 48=7 * 4] 8=7 * 5]-2=35]-14=33] 6=336
$$

Using cup-writing to divide 336 with 7 we prefer to have 28 instead of 33 inside the bundle cup, so we create an overload outside by moving 5 bundles outside as 501 s

$$
\mathrm{T}=336=33] 6=28] 56 \text {; so } \mathrm{T} / 7=4] 8=48
$$

Alternatively, we can create an underload outside before dividing

$$
\mathrm{T}=336=33] 6=35]-14 ; \text { so } \mathrm{T} / 7=5]-2=4] 8=48
$$

To divide 338 by 7 we get 2 single leftovers that counted in 7 s becomes a fraction $2 / 7$

$$
\mathrm{T}=338=33] 8=28] 58=28] 56+2 ; \text { so } \mathrm{T} / 7=4] 8+2 / 7=482 / 7
$$

Introduction to the Chapters

Chapter 01, From Sticks to Icons, shows how rearranging four sticks creates a 4-icon with as many sticks as it represents; likewise with the other icons until ten having a name but no icon.
Chapter 02, Counting in Icons, shows that when counting by bundling, the bundle-icon is not used. Hence, when counting in tens, ten does not need an icon. A natural counting sequence will report both the bundles and the unbundled: $01,02, \ldots, 10,11$; or $0.1,0.2, \ldots, 1.0,1.1$ always including the bundle-name as the unit. Each bundle-size has its own counting sequence, but the standard is ten-counting in a sloppy version leaving out the unit and misplacing the decimal point by saying 23 instead of 2.3 tens.

Chapter 03, CupCounting in Icons, shows how a total T can be recounted in icon-bundles. Thus a total of nine things, represented by a line of sticks or beads on an abacus, can be counted in fours by a counting sequence. Also, they can be represented by a stack of bundles placed with one stick per bundle in a bundle cup that can written as a bracket (cup-writing) and reported as a decimal number with a unit where the decimal point separates the bundles from the unbundled singles, $T=9=2] 14 \mathrm{~s}=2.14 \mathrm{~s}$. Alternatively, a calculator can be asked to predict the counting result. Entering ' $9 / 4$ ', we ask 'from 9 , taking away 4 s can be done how many times?' The calculator answers ' 2 .some' so by entering ' $9-2 \mathrm{x} 4$ ' we ask 'from 9 , once taking away 24 s leaves what?' The answer ' 1 ' gives the calculator prediction $\mathrm{T}=9=2.14 \mathrm{~s}$. Thus also operations are icons: / 4 shows the broom wiping away 4 many times, -4 shows the trace left when dragging away 4 only once, 2 x shows the lifting needed to create a stack of 2 bundles, and +3 shows the juxtaposition of 3 singles left next to a stack of bundles. Moving 1 stick outside the bundle cup creates an overload $\mathrm{T}=1] 5$ 4 s ; and moving an extra stick in gives an underload, a deficit, $\mathrm{T}=3 \mathrm{~J}-34 \mathrm{~s}$. Thus by recounting, a total T of nine can be recounted in 4 different ways: $T=$ nine $=91 \mathrm{~s}=2] 14 \mathrm{~s}=1] 54 \mathrm{~s}=3]-34 \mathrm{~s}$. This comes in handy when totals are added, subtracted, multiplied or divided.

Kapitel 04, CupCounting with dices, shows how a total T can be recounted in icon-bundles where the total is shown on two similar dices and the icon-number is shown on a third dice.

Chapter 05, ReCounting in the same Unit, shows how to recount a total T in the same unit by unbundling a bundle to singles thus creating an overload, or by embezzling extra singles that then has be counted for as a deficit. Thus a total of 2.15 s can be written with overload as $\mathrm{T}=1] 65 \mathrm{~s}$ or as $\mathrm{T}=1.65 \mathrm{~s}$, or with embezzlement as $\mathrm{T}=3$] -45 s or as $\mathrm{T}=3 .-45 \mathrm{~s}$

Chapter 06, ReCounting in a new Unit, shows how once counted in one unit, a total T can be recounted in another unit. Thus a total of 29 s can be recounted in 6 s as in chapter 3, again by lining, counting, bundling, stacking, cup-writing and answering; and again checked by a calculator prediction using two formulas. The ReCount formula $\mathbf{T}=(\mathbf{T} / \mathbf{B}) * \mathbf{B}$ saying that 'from $T, T / B$ times Bs can be taken away'; and the ReStack formula $\mathbf{T}=(\mathbf{T}-\mathbf{B})+\mathbf{B}$ saying that 'From $T, T-B$ is left when B is placed next to'. To change a unit is also called proportionality.

Chapter 07, ReCounting in BundleBundles, shows how an overload in a bundle-cup can be removed by an extra cup for bundles-of-bundles. Thus counting a total T of 48 s in 5 s gives $\mathrm{T}=6] 25 \mathrm{~s}$. However, with 5 as the bundle-size, 5 bundles can be recounted as 1 bundle-of-bundles of 5 s so that $\mathrm{T}=6] 25 \mathrm{~s}=\mathrm{B} 1] 25 \mathrm{~s}=1] 1] 25 \mathrm{~s}$ or $\mathrm{T}=6.25 \mathrm{~s}=11.25 \mathrm{~s}$.

Chapter 08, ReCounting in Tens on Squared Paper or an Abacus, shows how easy totals counted in iconbundles can be recounted in tens since the calculator is programmed to give the answer directly in its sloppy version. Thus to recount 38 s in tens we enter $3 * 8$ and get the answer 24 , so $\mathrm{T}=38 \mathrm{~s}=2.4$ tens. Recounting icon-numbers in tens systematically will provide the multiplication tables showing individual patterns in a ten by ten square or on an abacus.

Chapter 09, ReCounting from Tens, shows, as in chapter 3, that we can get the answer through a calculator prediction or through lining, rebundling, and cup-writing. Only this time we shorten the line by using Roman numbers as icons. Recounting large numbers from tens, we save time by using a multiplication table. Thus to recount a total T of 253 in 7 s we use cup-writing to create overloads guide by the table:
$\mathrm{T}=253=25] 3=21] 43=21] 42+1=3] 6 * 7+1$, so $\mathrm{T}=253=367 \mathrm{~s}+1$.
Chapter 10, ReCounting BigNumbers in Tens, show how cup-writing may be used to create overloads later to be removed to get the final answer. Thus to recount 743 s in tens gives a total
$\mathrm{T}=743 \mathrm{~s}=7 * 43=7 * 4] 3=28] 21=30] 1=301$ as confirmed by a calculator.

Chapter 11, DoubleCounting with PerNumbers, shows that counting a quantity in two different physical units will provide a per-number to be used as a bridge connecting the two units. Thus counting a quantity as $4 \$$ and as 5 kg gives the per-number $4 \$ / 5 \mathrm{~kg}$ or $4 / 5 \$ / \mathrm{kg}$. Asking ' $8 \$=? \mathrm{~kg}$ ', the answer comes from recounting the 8 s in 4 s to be able to use the per-number as a bridge between the two units:
$\mathrm{T}=8 \$=(8 / 4) * 4 \$=(8 / 4) * 5 \mathrm{~kg}=10 \mathrm{~kg}$. Likewise when asking e.g.' $? \$=12 \mathrm{~kg}{ }^{\prime}$
Chapter 12, DoubleCounting with Fractions and Percentages, shows that fractions and percentages can be treated as per-numbers. Thus asking ' $3 / 5$ of 200 '' is the same as asking ' 3 per 5 of $200 \$$ gives ?'. So we recount the 200 in 5 s to get the answer: $\mathrm{T}=200 \$=(200 / 5) * 5 \$$ giving $(200 / 5) * 3 \$=120 \$$. And asking ' 3% of $250 \$$ ' is the same as asking ' 3 per 100 of $250 \$$ '. So we recount the 250 in 100 s to get the answer:
$\mathrm{T}=250 \$=(250 / 100)^{*} 100 \$$ gives $(250 / 100) * 3 \$=7.5 \$$ as confirmed by writing ' $3 / 100 * 250$ ' on a calculator.
Chapter13, ReCounting PerNumbers, Fractions, shows how changing unit transforms pernumbers.
Chapter 14, Adding OnTop, shows that to add two totals T1 and T2 OnTop the units must be the same so recounting may be needed to change a unit. Thus adding 23 s and 45 s as 3 s , the 45 s must be recounted as 3 s to give a total of 8.23 s as confirmed by a calculator.

Chapter 15, Reversed Adding OnTop, shows that to reverse OnTop addition, the first total must be taken away before counting the rest in the unit of the second total. Thus asking ' $23 \mathrm{~s}+$? 5 s total 53 s , we take away the 23 s from the 53 s before recounting the rest, $\mathrm{T}-\mathrm{T} 1$, in 5 s by saying $(\mathrm{T}-\mathrm{T} 1) / 5=\Delta \mathrm{T} / 5=1.45 \mathrm{~s}$ as confirmed by a calculator. Subtraction followed by division is called differentiation.

Chapter 16, Adding NextTo, shows that adding two totals T1 and T2 NextTo means adding their areas, also called integration. Thus adding 23 s and 45 s NextTo each other as 8 s on a ten by ten square or on an abacus gives 3.28 s as confirmed by a calculator.
Chapter 17, Reversed Adding NextTo, shows that to reverse NextTo addition, the first total must be taken away before counting the rest in the unit of the second total. Thus asking ' $23 \mathrm{~s}+$? 5 s total 38 s , we take away the 23 s from the 38 s before recounting the rest, $\mathrm{T}-\mathrm{T} 1$, in 5 s by saying $(\mathrm{T}-\mathrm{T} 1) / 5=\Delta \mathrm{T} / 5=3.35 \mathrm{~s}$ as confirmed by a calculator. Together, integration and differentiation is called calculus.

Chapter 18, Adding Tens, shows that when adding tens, cup-writing can be used to create and remove overloads. Thus adding totals as 27 and 85 creates an overload that can be removed by cup-writing, $\mathrm{T}=27+85=2] 7+8] 5=10] 12=11] 2=112$ as confirmed by a calculator.
Chapter 19, Reversed Adding Tens, the number added must be taken away which might result in a deficit calling for a unbundling a bundle, unless this is done first resulting in an overload that allows taking the number away without creating a deficit. Thus asking '? $+27=85^{\prime}$ or ' $85-27$ ', cup-writing is used to remove the deficit, $85-27=8] 5-2] 7=6]-2=5] 8=58$; or used to create an overload, $85-27=8] 5-2] 7=7] 15-2\rfloor 7=5] 8=58$, both confirmed by a calculator.
Chapter 20, Recounting Solves Equations, shows that equations expressing a reversed calculation can be solved by recounting and restacking. Thus to solve the equation $u * 2=8,8$ is recounted in 2 s as $8=(8 / 2) * 2=$ $4 * 2$, so that $u=4$, checked by a calculator by entering $4 * 2$. With $u * 2=8$ solved by $u=8 / 2$ we get a shortcut for solving equations: Move to the opposite side with the opposite sign.

$\mathbf{u * 2}=\mathbf{8}=(8 / 2) * 2=4 * 2$	Here we recount 8 in 2 s as $8=(8 / 2) * 2=4 * 2$	$\mathbf{u}=\mathbf{4}$
$\mathbf{u + 2}=\mathbf{9}=(9-2)+2=7+2$	Here we restack 9 to $9-2+2=7+2$	$\mathbf{u}=\mathbf{7}$
$\mathbf{u} / \mathbf{3}=\mathbf{2}$	Here we recount 2 in 3 s as $2=(2 / 3) * 3=2 * 3 / 3=6 / 3$	$\mathbf{u}=\mathbf{6}$
$\mathbf{u - 2}=\mathbf{6}$	Here we restack 6 to $6-2+2=6+2-2=8-2$	$\mathbf{u}=\mathbf{8}$
$\mathbf{2}^{*} \mathbf{u + 3}=\mathbf{1 5}$	Here we restack 15 to $15-3+3=12+3$, and $2 * \mathbf{u}=12=12 / 2 * 2=6 * 2$	$\mathbf{u}=\mathbf{6}$
$\mathbf{2 *} \mathbf{u - 3}=\mathbf{1 5}$	Here we restack 15 to $15-3+3=15+3-3=18-3$, and $2 * \mathbf{u}=18=18 / 2 * 2=9 * 2$	$\mathbf{u}=\mathbf{9}$
$\mathbf{u} / \mathbf{2 + 3}=\mathbf{1 5}$	Here we restack 15 to $15-3+3=12+3$, and $u / 2=12=12 / 2 * 2=12 * 2 / 2=24 / 2$	$\mathbf{u}=\mathbf{2 4}$
$\mathbf{2 / u - 3}=\mathbf{1 5}$	Here we restack 15 to $15-3+3=15+3-3=18-3$, and $2 / \mathbf{u}=18=18 / 2 * 2=18 * 2 / 2=36 / 2$	$\mathbf{u}=\mathbf{3 6}$

1. From Sticks to Icons

Job Do

| | | | | | | | | | | | | | | | | | | |
| :---: |

II | | \square | | | | | | | | | | | | | | | | | | |
| :--- |
| |
| |

II \begin{tabular}{|l|}
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline

 IIII

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline

 |I\|\|

\hline
\end{tabular} ||||

| IIII

""'

Count \& Color Squares

	$\mathbf{9}$			$\mathbf{8}$			$\mathbf{7}$			$\mathbf{6}$			$\mathbf{5}$			$\mathbf{4}$			$\mathbf{3}$		$\mathbf{2}$		$\mathbf{1}$

2		4			6			8			1		3		5			7				9	

1		2		4			8			3		5				9			6			7	

3		6				9			8			5			4			7			1		2

1		3		5			7				9			8			6			4			2

5			3		1		2		4			7				9			8			6	

2. Counting in Icons

| I | I | I | I | I | I | I | I | I | I | I | I | I | I | |
| :---: |
| ten | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| ten | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 1 B | 1 B 1 | 1 B 2 | 1 B 3 | 1 B 4 |
| ten | .1 | .2 | .3 | .4 | .5 | .6 | .7 | .8 | .9 | 1. | 1.1 | 1.2 | 1.3 | 1.4 |
| $\mathbf{9}$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 1 B | 1 B 1 | 1 B 2 | 1 B 3 | 1 B 4 | 1 B 5 |
| $\mathbf{9}$ | .1 | .2 | .3 | .4 | .5 | .6 | .7 | .8 | 1. | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 |
| $\mathbf{8}$ | | | | | | | | | | | | | | |
| $\mathbf{8}$ | | | | | | | | | | | | | | |
| $\mathbf{7}$ | | | | | | | | | | | | | | |
| $\mathbf{7}$ | | | | | | | | | | | | | | |
| $\mathbf{6}$ | | | | | | | | | | | | | | |
| $\mathbf{6}$ | | | | | | | | | | | | | | |
| $\mathbf{5}$ | | | | | | | | | | | | | | |
| $\mathbf{5}$ | | | | | | | | | | | | | | |
| $\mathbf{4}$ | | | | | | | | | | | | | | |
| $\mathbf{4}$ | | | | | | | | | | | | | | |
| $\mathbf{3}$ | 01 | 02 | 1 B | 1 B 1 | 1 B 2 | 2 B | 2 B 1 | 2 B 2 | BB | 1 BB 1 | 1 BB 2 | 1 BB 1 B | 1 BB 1 B 1 | $1 \mathrm{BB} 1 \mathrm{B2} 2$ |
| $\mathbf{3}$ | .1 | .2 | 1. | 1.1 | 1.2 | 2. | 2.1 | 2.2 | 10. | 10.1 | 10.2 | 11. | 11.1 | 11.2 |
| $\mathbf{2}$ | | | | | | | | | | | | | | |
| $\mathbf{2}$ | | | | | | | | | | | | | | |
| $\mathbf{1 1}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | X | 1 B | 1 B 1 | 1 B 2 | 1 B 3 |
| $\mathbf{1 1}$ | 01 | | | | | | | | | | | | | |
| $\mathbf{1 1}$ | .1 | | | | | | | | | | | | | |

	II													
ten	02				1B							2B2		
ten														
9														
9														
8														
8														
7														
7														
6														
6														
5														
5														
4														
3														
3														

III III

ten														

3. CupCounting in Icons

Job		Do	Calculator	
$\stackrel{9}{\text { in } 5 s}$	Line Count Bundle Stack Cup Answer	$\begin{aligned} & \mathrm{T}=\|\|\|\|\|l\| l\| \\ & 1,2,3,4, \mathrm{~B}, 1 \mathrm{~B} 1,1 \mathrm{~B} 2,1 \mathrm{~B} 3, \underline{1 B 4} \\ & \mathrm{~T}=+1 H\|।\| l \end{aligned}$ $\begin{aligned} & \mathrm{T}=1] 45 \mathrm{~s}=0] 95 \mathrm{~s}=2]-15 \mathrm{~s} \\ & \mathrm{~T}=9=1.45 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 9 / 5 \\ & 9-1 * 5 \\ & 9-0 * 5 \\ & 9-2 * 5 \end{aligned}$	1.some 4 9 -1
$\stackrel{9}{\text { in } 4 s}$	Line Count Bundle Cup Stack Answer		$\begin{aligned} & 9 / 4 \\ & 9-2 * 4 \\ & 9-1 * 4 \\ & 9-3 * 4 \end{aligned}$	2.some 1 5 -3
$\begin{gathered} 9 \\ \text { in } 3 s \end{gathered}$	Line Count Bundle Cup Stack Answer		$\begin{aligned} & 9 / \\ & 9 \end{aligned}$	
$\begin{gathered} 8 \\ \text { in } 4 s \end{gathered}$	Line Count Bundle Cup Stack Answer		8	
$\begin{gathered} 8 \\ \text { in } 3 s \end{gathered}$	Line Count Bundle Cup Stack Answer		$\begin{array}{\|l} 8 \\ 8 \end{array}$	

4. CupCounting with Dices

Job		Do	Calculator
	Line Count Bundle Cup Stack Answer		$9 / 4$ 2.some $9-2 * 4$ 1 $9-1 * 4$ 5 $9-3 * 4$ -3
	Line Count Bundle Cup Stack Answer		$\begin{aligned} & 9 / \\ & 9- \end{aligned}$
	Line Count Bundle Cup Stack Answer		$\begin{aligned} & 9 \\ & 9 \end{aligned}$
	Line Count Bundle Cup Stack Answer		$\begin{aligned} & 7 \\ & 7 \end{aligned}$
	Line Count Bundle Cup Stack Answer		7

5. ReCounting in the Same Unit

Job		Do	Cup	Answer
$\begin{gathered} 2.15 s \\ \text { in } 5 \mathrm{~s} \end{gathered}$	Line UnBundle Embezzle		$\begin{aligned} & \hline 2] 1 \\ & 1] 6 \\ & 3]-4 \end{aligned}$	$\begin{aligned} & \mathrm{T}=2.15 \mathrm{~s} \\ & \mathrm{~T}=1.65 \mathrm{~s} \\ & \mathrm{~T}=3 .-4 \mathrm{~s} \mathrm{~s} \end{aligned}$
$\begin{gathered} 2.14 s \\ \text { in 4s } \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 2.13 s \\ \text { in 3s } \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 2.16 s \\ \text { in } 6 s \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 2.17 s \\ \text { in 7s } \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 3.27 s \\ \text { in 7s } \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 3.26 s \\ \text { in } 6 s \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 3.25 s \\ \text { in } 5 \mathrm{~s} \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 3.24 s \\ \text { in 4s } \end{gathered}$	Line UnBundle Embezzle			
$\begin{gathered} 3.23 s \\ \text { in 3s } \end{gathered}$	Line UnBundle Embezzle			

6. ReCounting in a New Unit

Job		Do	Calculator
$\begin{gathered} 29 \mathrm{~s} \\ \text { in } 6 \mathrm{~s} \end{gathered}$	Line Count Bundle Stack Cup Answer	\square $\begin{aligned} & T=3] \\ & T=29 \mathrm{~s}=36 \mathrm{~s} \end{aligned}$	$\begin{array}{ll} 2 * 9 / 6 & 3 \\ 2 * 9-3 * 6 & 0 \end{array}$
$\begin{gathered} 29 s \\ \text { in 5s } \end{gathered}$	Line Count Bundle Stack Cup Answer		$\begin{aligned} & 2 * 9 / \\ & 2 * 9 \end{aligned}$
$\begin{gathered} 28 s \\ \text { in } 6 s \end{gathered}$	Line Count Bundle Stack Cup Answer		$\begin{aligned} & 2 * 8 \\ & 2 * 8 \end{aligned}$
$\begin{gathered} 28 s \\ \text { in } 5 s \end{gathered}$	Line Count Bundle Stack Cup Answer		$\begin{aligned} & 2 * 8 \\ & 2 * 8 \end{aligned}$
$\begin{gathered} 27 s \\ \text { in 6s } \end{gathered}$	Line Count Bundle Stack Cup Answer		$\begin{aligned} & 2 * 7 \\ & 2 * 7 \end{aligned}$

07. Recounting in BundleBundles

Job		Do	Calculator
$\begin{gathered} 48 s \\ \text { in } 5 s \end{gathered}$	Cup Answer	$\begin{aligned} & T=48 s=6] 2=B 1] 25 s=1] 1] 2 \\ & T=48 s=6.25 s=11.25 s=12 .-35 s \end{aligned}$	$\begin{array}{lr} 4 * 8 / 5 & 6 . \text { some } \\ 4 * 8-6 * 5 \end{array}$
$\begin{gathered} 58 \mathrm{~s} \\ \text { in } 6 \mathrm{~s} \end{gathered}$	Cup Answer		
$\begin{gathered} 69 s \\ \text { in } 7 \mathrm{~s} \end{gathered}$	Cup Answer		
$\begin{gathered} 99 s \\ \text { in 8s } \end{gathered}$	Cup Answer		
$\begin{gathered} 39 s \\ \text { in } 4 s \end{gathered}$	Cup Answer		
$\begin{gathered} 45 s \\ \text { in 3s } \end{gathered}$	Cup Answer		
$\begin{gathered} 68 s \\ \text { in } 5 s \end{gathered}$	Cup Answer		
$\begin{gathered} 68 s \\ \text { in } 4 s \end{gathered}$	Cup Answer		
$\begin{gathered} 78 s \\ \text { in } 5 s \end{gathered}$	Cup Answer		
$\begin{gathered} 78 s \\ \text { in 4s } \end{gathered}$	Cup Answer		
$\begin{gathered} 88 s \\ \text { in } 5 s \end{gathered}$	Cup Answer		
$\begin{gathered} 88 s \\ \text { in } 4 s \end{gathered}$	Cup Answer		

8. ReCounting in Tens on Squared Paper or an Abacus

9. Recounting From Tens

Job		Do	Calculator
$\begin{gathered} 37 \\ \text { in } 9 s \end{gathered}$	Line ReBundle Cup Answer	XXXVII 91 9191V II -> 999X -> 99991 3] $7=137=136+1=14 * 9+1$ $\mathrm{T}=37=4 * 9+1=4.19 \mathrm{~s}=41 / 99 \mathrm{~s}$	$\begin{array}{lr} 37 / 9 & \text { 4.some } \\ 37-4 * 9 & 1 \end{array}$
$\begin{gathered} 37 \\ \text { in 7s } \end{gathered}$	Line ReBundle Cup Answer		
$\begin{gathered} 37 \\ \text { in } 5 s \end{gathered}$	Line ReBundle Cup Answer		
$\begin{gathered} 42 \\ \text { in } 7 s \end{gathered}$	Line ReBundle Cup Answer		
$\begin{gathered} 42 \\ \text { in } 5 s \end{gathered}$	Line ReBundle Cup Answer		
$\begin{gathered} 26 \\ \text { in } 7 s \end{gathered}$	Line ReBundle Cup Answer		
$\begin{gathered} 26 \\ \text { in } 5 s \end{gathered}$	Line ReBundle Cup Answer		

10. Recounting Large Numbers in Tens

Job		Do	Calculator
7 43s	Cup Answer	$\begin{aligned} & \mathrm{T}=7 * 4] 3=28] 21=30] 1=301 \\ & \mathrm{~T}=743 \mathrm{~s}=30.1 \text { tens }=301 \end{aligned}$	7*43 301
843s	Cup Answer		
$943 s$	Cup Answer		
6 43s	Cup Answer		
5 62s	Cup Answer		
4 62s	Cup Answer		
3 62s	Cup Answer		
2 62s	Cup Answer		
27 436s	Cup Answer		
3 436s	Cup Answer		
4 436s	Cup Answer		
5 436s	Cup Answer		
6 436s	Cup Answer		
7 436s	Cup Answer		
8436 s	Cup Answer		

11. DoubleCounting with PerNumbers

Job	Do	Formula
With 4 \$ per 5 kg $\begin{gathered} 8 \$=? k g \\ ? \$=12 \mathrm{~kg} \end{gathered}$	$\begin{aligned} & 8 \$=(8 / 4) * 4 \$=(8 / 4) * 5 \mathrm{~kg}=10 \mathrm{~kg} \\ & 12 \mathrm{~kg}=(12 / 5) * 5 \mathrm{~kg}=(12 / 5) * 4 \$=9.6 \$ \end{aligned}$	$\begin{aligned} & \hline \mathrm{Kg}=(\mathrm{kg} / \mathrm{\$}) * \$ \\ & \mathrm{Kg}=(5 / 4)^{*} 8=10 \\ & \$=(\$ / \mathrm{kg}) * \mathrm{~kg} \\ & \$=(4 / 5) * 12=9.6 \end{aligned}$
With 3 \$ per 5 kg $\begin{gathered} 8 \$=? k g \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 4 \$ per 6 kg $\begin{gathered} 8 \$=? k g \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 4 \$ per 8 kg $\begin{gathered} 8 \$=? \mathrm{~kg} \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 4 \$ per 5 kg $\begin{gathered} 8 \$=? \mathrm{~kg} \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 3 \$ per 5 kg $\begin{gathered} 8 \$=? k g \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 4 \$ per 6 kg $\begin{gathered} 8 \$=? \mathrm{~kg} \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 4 \$ per 8 kg $\begin{gathered} 8 \$=? \mathrm{~kg} \\ \text { ? } \$=12 \mathrm{~kg} \end{gathered}$		
With 2 \$ per 5 kg $\begin{gathered} 8 \$=? k g \\ ? \$=12 \mathrm{~kg} \end{gathered}$		
With 2 \$ per 7 kg $\begin{gathered} 8 \$=? \mathrm{~kg} \\ ? \$=12 \mathrm{~kg} \end{gathered}$		

12. DoubleCounting with Fractions and Percentages

Job	Do	Calculator	
3 per 5 of 200\$	$\begin{aligned} & \text { 200\$ }=(200 / 5) * 5 \$ \\ & \text { Giving }(200 / 5)^{*} 3 \$=120 \$ \end{aligned}$	3/5*200	120
3 per 5 of 400\$			
2 per 5 of 200\$			
1 per 5 of 200\$			
3 per 6 of 240\$			
2 per 6 of 240\$			
5 per 6 of 300\$			
3 per 100 of 250\$ or 3\% of 250\$	$\begin{aligned} & 250 \$=(250 / 100)^{*} 100 \$ \\ & \text { Giving }(250 / 100)^{*} 3 \$=7.5 \$ \end{aligned}$	3/100*250	7.5
8 per 100 of 200\$ or 8% of $\mathbf{2 0 0 \$}$			
20 per 100 of 200\$ or $\mathbf{2 0 \%}$ of $\mathbf{2 0 0 \$}$			
3 per 100 of 560\$ or 3\% of 560\$			
8 per 100 of 560\$ or 8% of $560 \$$			
12 per 100 of 560\$ or 12% of $560 \$$			
20 per 100 of 560\$ or $\mathbf{2 0 \%}$ of $\mathbf{5 6 0 \$}$			
60 per 100 of 560\$ or 60% of $560 \$$			

13. ReCounting PerNumbers, Fractions

Job	Do	Do	Calculator	Calculator
$\begin{aligned} & \text { 2/3 } \\ & =\text { ? } \end{aligned}$	$\begin{aligned} & 2 / 3=22 s / 32 s=4 / 6 \\ & 2 / 3=23 s / 33 s=6 / 9 \end{aligned}$	$\begin{aligned} & 2 / 3=24 s / 34 s=8 / 12 \\ & 2 / 3=25 s / 35 s=10 / 15 \end{aligned}$	$\begin{aligned} & 2 / 3=0.66 . . \\ & 4 / 6=0.66 . . \end{aligned}$	$\begin{aligned} & 8 / 12=0.66 . . \\ & 10 / 15=0.66 . \end{aligned}$
$\begin{aligned} & 1 / 3 \\ & =? \end{aligned}$				
$\begin{aligned} & 1 / 5 \\ & =? \end{aligned}$				
$\begin{aligned} & 2 / 5 \\ & =? \end{aligned}$				
$\begin{aligned} & 3 / 5 \\ & =? \end{aligned}$				
$\begin{aligned} & 4 / 5 \\ & =? \end{aligned}$				
$\begin{aligned} & 4 / 6 \\ & 2 / 6 \\ & 6 / 8 \\ & 2 / 8 \end{aligned}$	$\begin{aligned} & 4 / 6=22 s / 32 s=2 / 3 \\ & 2 / 6=12 s / 32 s=1 / 3 \end{aligned}$	$\begin{aligned} & 6 / 8=32 s / 42 s=3 / 4 \\ & 2 / 8=12 s / 42 s=1 / 4 \end{aligned}$	$\begin{aligned} & 4 / 6=0.66 . . \\ & 2 / 3=0.66 . . \\ & 2 / 6=0.33 . \\ & 1 / 3=0.33 . . \end{aligned}$	$\begin{aligned} & 6 / 8=0.75 \\ & 3 / 4=0.75 \\ & 2 / 8=0.25 \\ & 1 / 4=0.25 \end{aligned}$
$\begin{aligned} & 2 / 10 \\ & 4 / 10 \\ & 6 / 10 \\ & 8 / 10 \end{aligned}$				
$\begin{gathered} 2 / 12 \\ 4 / 12 \\ 6 / 12 \\ 8 / 12 \\ 10 / 12 \\ \hline \end{gathered}$				
$\begin{gathered} \hline 2 / 14 \\ 4 / 14 \\ 6 / 14 \\ 8 / 14 \\ 10 / 14 \\ 12 / 14 \end{gathered}$				
2/16 4/16 6/16 8/16 10/16 12/16 14/16				

14. Adding OnTop

15. Reversed Adding OnTop

16. Adding NextTo

17. Reversed Adding NextTo

18. Adding Tens

Job		Do	Calculator
$27+85$	Cup Answer	$\begin{aligned} & \mathrm{T}=2] 7+8] 5=10] 12=11] 2=112 \\ & \mathrm{~T}=27+85=11.2 \text { tens }=112 \end{aligned}$	27+85 112
$27+85$	Cup Answer		
$33+78$	Cup Answer		
$39+71$	Cup Answer		
$45+67$	Cup Answer		
$58+57$	Cup Answer		
$57+49$	Cup Answer		
$27+205$	Cup Answer		
$33+198$	Cup Answer		
$39+191$	Cup Answer		
45 + 187	Cup Answer		
$58+177$	Cup Answer		
$57+169$	Cup Answer		
$127+385$	Cup Answer		
$433+578$	Cup Answer		

19. Reversed Adding Tens

Job		Do	Calculator
$\begin{gather*} 27+?=85 \tag{58}\\ 85-27 \end{gather*}$	Cup Answer	$\begin{aligned} & \mathrm{D}=8] 5-2] 7=6]-2=5] 8=58 \\ & \mathrm{D}=8] 5-2] 7=7] 15-2] 7=5] 8=58 \\ & \mathrm{~T}=85-27=5.8 \text { tens }=58 \end{aligned}$	$85-27$
63-17	Cup Answer		
55-36	Cup Answer		
35-17	Cup Answer		
185-27	Cup Answer		
235-128	Cup Answer		
242-128	Cup Answer		
245-167	Cup Answer		
312-159	Cup Answer		
421-268	Cup Answer		

20. ReCounting solves Equations

Do	Equation	Calculator	
ReCount Answer	$\begin{aligned} & \mathbf{u} * \mathbf{2}=\mathbf{3 0}=(30 / 2)^{*} 2=15^{*} 2 \\ & \mathbf{u}=15 \end{aligned}$	15*2	30
ReCount Answer	$\mathrm{u}^{*} 3=15$		
ReCount Answer	u*4 = 32		
ReCount Answer	u*5 $=40$		
ReCount Answer	$\begin{aligned} & u / 3=12=(12 / 3) * 3=12 * 3 / 3=36 / 3 \\ & u=36 \end{aligned}$	36/3	12
ReCount Answer	$u / 3=10$		
ReCount Answer	u/4 $=8$		
ReCount Answer	$\mathrm{u} / 5=6$		
ReCount Answer	$\begin{aligned} & u+2=30=(30-2)+2=28+2 \\ & u=28 \end{aligned}$	28+2	30
ReCount Answer	u+3 $=24$		
ReCount Answer	$u+4=20$		
ReCount Answer	$\mathrm{u}+5=12$		
ReCount Answer	$\begin{aligned} & u-2=30=(30-2)+2=30+2-2=32-2 \\ & u=32 \end{aligned}$	32-2	30
ReCount Answer	$\mathrm{u}-3=20$		
ReCount Answer	$u-5=10$		

ReCount ReCount Answer	$\begin{aligned} & 2 * u+3=15=(15-3)+3=12+3 \\ & 2 * u=12=(12 / 2) * 2=6 * 2 \\ & u=6 \end{aligned}$	2*6+3	15
ReCount ReCount Answer	3* $u+4$ = 19		
ReCount ReCount Answer	4* $u+6=38$		
ReCount ReCount Answer	$\begin{aligned} & 2 * u-3=15=(15-3)+3=15+3-3=18-3 \\ & 2 * u=18=(18 / 2) * 2=9 * 2 \\ & u=9 \end{aligned}$	2*9-3	15
ReCount ReCount Answer	$3 * u-4=8$		
ReCount ReCount Answer	4*u-5 $=23$		
ReCount ReCount Answer	$\begin{aligned} & u / 2+3=15=(15-3)+3=12+3 \\ & u / 2=12=(12 / 2) * 2=\left(12^{*} 2\right) / 2=24 / 2 \\ & u=24 \end{aligned}$	24/2+3	15
ReCount ReCount Answer	$u / 3+4=12$		
ReCount ReCount Answer	$\begin{aligned} & u / 2-3=15=(15-3)+3=(15+3)-3=18-3 \\ & u / 2=18=(18 / 2)^{*} 2=(18 * 2) / 2=36 * 2 \\ & u=36 \end{aligned}$	36/2-3	15
ReCount ReCount Answer	u/4-7 = 5		

