COUNTING before ADDING The Child's Own Twin Curriculum Count & ReCount & DoubleCount before Adding NextTo & OnTop

Master Many with ManyMath

Allan.Tarp@MATHeCADEMY.net, November 2018

Background: Our two language houses

The WORD language assigns words in sentences with	• a subject		
	• a verb		
The NUMBER language assigns numbers instead with	• a predicate		

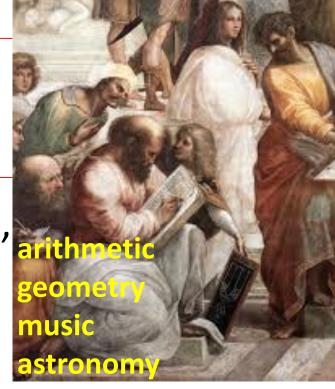
Both languages have a META-language, a grammar, describing the language, that is learned before the grammar. But does mathematics respect teaching language before grammar?

	WORD language	NUMBER language
META-language, grammar	ʻis' is a verb	'x' is an operation Mathematics
Language		T = 3x4
	Mother tongue WC	RLD

How well defined is mathematics?

In ancient Greece, Pythagoras used mathematics, meaning knowledge, as a common label for four descriptions of Many by itself & in space & time:

Together they formed the '**quadrivium**' recommended by Plato as a general curriculum after the '**trivium**' consisting of grammar & logic & rhetoric. Geometry & algebra are both grounded in Many as shown by names: **Geometry** means to <u>measure earth</u> in Greek Algebra means to <u>reunite numbers</u> in Arabic



Around 1900, SET made math a self-referring MetaMath. But Russell saw that self-reference leads to the classical liar paradox 'this sentence is false', being false if true & opposite: "Let M be the set of sets not belonging to itself, $M = \langle A | A \notin A \rangle$. Then $M \in M \Leftrightarrow M \notin M$. Forget about sets. Use type theory instead. So, by self-reference, fractions cannot be numbers." Mathematics: "Forget about Russell, he is not a mathematician. We just institutionalize fractions as so-called rational numbers."

Institutions as thorns protecting Sleeping Beauties

- <u>Weber</u> on institutionalization: Rationalized too far, mathematics may become an **iron cage** that **disenchants** its subject.
- <u>Bauman</u> on self-reference: "The ideal model of action subjected to rationality as the supreme criterion contains a danger of socalled **goal displacement**. (..) The survival of the organization, however useless it may have become in the light of its original end, becomes the purpose in its own right".
- <u>Arendt</u>: Just following orders may lead to 'the banality of evil'.
- <u>Sartre</u> on existentialism: *"Existence precedes essence"*.

Three curriculum choices to make

What is the goal of mathematics education?

- 1. To learn institutionalized mathematics, or
- 2. To learn to master what exists, Many

What is the core means?

T = 3B2 = 3.2 = 4.-2 4s

- **1.** To learn about numbers without units, or 1, -2, 3/4, $\sqrt{5}$, π , e
- 2. To learn how to number with units

What are numbers?

- 1. One-dimensional line-numbers without units, or
- 2. Two-dimensional block-numbers with units

Choosing 1 may have caused 50 years of less successful math education research.

Different curricula: MetaMath or ManyMath

What is the goal of mathematics education?

- 1. To learn mathematics (self reference pointing up, Vygotsky theory)
- 2. To learn to Master Many (external reference pointing down, Piaget theory) What is a core means?
- 1. To learn about numbers (operations on specified and unspecified numbers)
- To learn how to number (number-language sentences about counting & adding totals)
 What are numbers?
- 1. 1D line-numbers (integer, natural, rational, real, place value system)
- 2. 2D bundle-numbers (constant & changing unit-numbers & per-numbers)

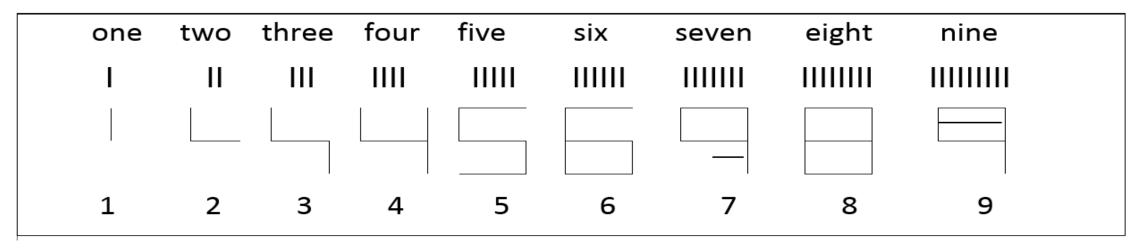
Why teach children if they already know?

With education curing un-educatedness, we ask: To CURE, be SURE

- 1. The diagnosed is not already cured
- 2. The diagnose is not self-referring: *teach math to learn math* Core Questions:
- What Mastery of Many does the child have already?
- What could be a <u>ChildCenteredCurriculum</u> in Quantitative Competence?

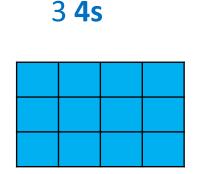
Creating icons: $|||| \rightarrow ||| \rightarrow - \rightarrow$

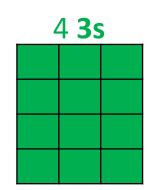
Children love making number-icons of cars, dolls, spoons, sticks. Counting in ones means naming the different degrees of Many. Changing four ones to one fours creates a 4-icon with four sticks. An icon contains as many sticks as it represents, if written less sloppy. Once created, icons become units to use when counting in bundles.



Children see Many as bundles with units

- "How old next time?" A 3year old says "Four" showing 4 fingers: ||||
- But, the child reacts strongly to 4 fingers held together 2 by 2: || |
- "That is not four, that is two twos"
- The child describes what exists, and with units: bundles of 2s, and 2 of them
- The block 3 4s has two numbers: 3 (the counting-number) and 4 (the unit-number)
- Children also use bundle-numbers with Lego blocks:





MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

- # ! ! ! ! ! H H I I I ● H H H I H H H H
- = 12s & 5 = 22s & 3 = 32s & 1 = 42s | ess 1T = 7
- And children don't mind writing a total of 7 using 'bundle-writing':

$$T = 7$$
 = 1B5 = 2B3 = 3B1 = 4B $\frac{1}{2}$, or even as
T = 7 = 1BB3 = 1BB1B1 = 2BB $\frac{1}{2}$

• Also, children love to count in **3s**, **4s**, and in **hands**: Thus, a number is a multi-counting of bundles as units T = 7 = 1 **5s** & 2 T = 7 = 1B2 5s(..., bundles-of-bundles, bundles, unbundled)

BBB1,...

Counting bundles gives a number formula

Children have fun when counting bundles, bundles of bundles, etc.: With ten-bundles: 01, 02, ..., 09, **Bundle**,

B1, B2,..., 9B8, 9B9, BundleBundle,

BB1,..., 2BB3B4,..., 9BB9B9, BundleBundleBundle,

With blocks turned to hide the units behind:

B is marked with 1, **BB** with 2, **BBB** with 3, etc., singles with 0.

Later, this is a number formula $T = 4567 = 4BBB5BB6B7 = 4xB^3 + 5xB^2 + 6xB + 7$

0

6

4

Counting ten fingers & counting in tens

Children have fun when flexibly counting ten fingers in different ways:

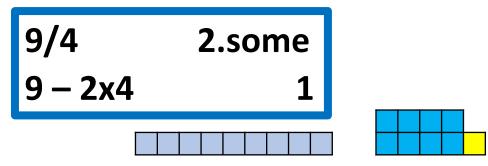
- The Roman way: 01, 02, 03, HandLess1, HAND, Hand1, H2, H3, 2H-1, 2H, 2H1, 2H2
- The Viking way: 01, 02, 03, 04, HALF, 06, 07, less2, less1, FULL, 1left, 2left
- The modern way: 01, 02,..., 09, ten, ten1, ten2,..., 9ten8, 9ten9, tenten, tenten1,..., 2tenten3ten4,..., 9tenten9ten9, tententen, tententen1,...

'From 9 take away **4s**' we write 9/4 iconizing the sweeping away by a broom, called division. '2 times stack 4s' we write 2x4 iconizing the stacking up by a lift called multiplication. 'From 9 take away 2 4s' to look for un-bundled we write 9 – 2x4 iconizing the dragging away by a trace called subtraction. So counting includes division and multiplication and subtraction: Finding the bundles: 9 = 9/4 **4s**. Finding the un-bundled: 9 - 2x4 = 1.

Counting creates two counting formulas

<i>ReCount</i> T = (T/B) x B	from a total T , T/B times, IIII Bs is taken away and stacked on-top	
ReStack	from a stack T , T–B is left when B is taken away and placed next-to	

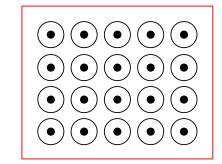
With formulas, a calculator can **predict** the counting-result 9 = 2**B**1 **4s**

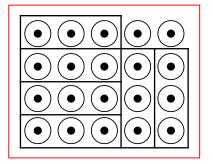


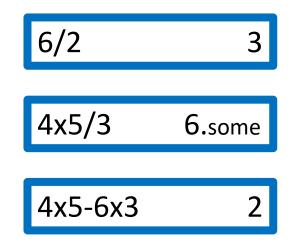
As sentences of the number language, **formulas predict**

To share Many, children take away bundles predicted by division, multiplication and subtraction

- They smile when seeing that entering '6/2' allows a calculator to predict that they can take cakes 3 times.
- And when seeing that '4x5/3' predicts that 3 children can take cakes 6 times (or 6 cakes 1 time) when sharing 4 rows of 5 cakes.
- And when seeing that '4x5-6x3' predicts that 2 will be left.







Question Guided Counting Curriculum

A question guided re-enchanting COUNTING curriculum could be named <u>Mastering Many by counting</u>, re-counting & double-counting.

- The design accepts that while 8 competences might be needed to learn university mathematics, only 2 are needed to Master Many: COUNTING & ADDING, motivating a twin curriculum.
- The corresponding pre-service or in-service question guided teacher education can be found at the MATHeCADEMY.net.
- Remedial micro-curricula for classes stuck in traditional mathematics can be found there also.

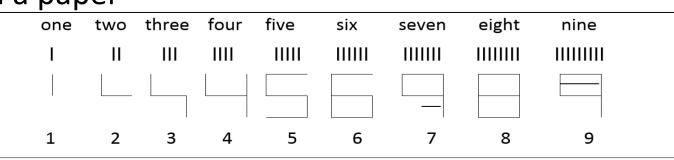
Q01, icon making $||| \rightarrow ||| \rightarrow ||| \rightarrow |||$

"The digit-icon 4 seems to be have four sticks. Does this apply to all digit-icons?"

We can change <u>many ones</u> to <u>one icon</u> with as many sticks or strokes as it represents, if written in a less sloppy way.

Follow-up activities could be:

- rearranging four dolls as one 4-icon, five cars as one 5-icon, etc.
- rearranging sticks on a table or on a paper
- using a folding ruler to construct the ten digits as icons



Q02, counting sequences I

- "How to count fingers?"
- Using **5s** as the bundle-size, five fingers can be counted as "01, 02, 03, 04, **Bundle**"
- And ten fingers can be counted as

"01, 02, Bundle less2, Bundle -1, Bundle"

"Bundle&1, B&2, 2B less2, 2B-1, 2B".

Follow-up activities could be counting the fingers in 3s and 4s and 7s:

T = ten = 1**B**3 **7**s = 2**B**2 **4**s = 3**B**1 **3**s = 1**BB**1 **3**s.

Q02, counting sequences II

Counted as 1**B**, the bundle-number needs

C C C C C	0	-	-	•
(214) (E) (S)	(-)	2)		
		2)		SP

in	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	$\textcircled{\bullet}$	\bullet	$\textcircled{\bullet}$	
4 s	01	02	03	В	1 B 1	1 B 2	1 B 3	2 B	2 B 1	2 B 2	2 B 3	3 B
7 s	01	02	03	04	05	06	В	1 B 1	1 B 2	1 B 3	1 B 4	1 B 5
tens	01	02	03	04	05	06	07	08	09	В	1 B 1	1 B 2

The number names, <u>eleven</u> and <u>twelve</u> come from 'one left' and 'two left' in Danish, (en / twe levnet), again showing that counting takes place by taking away bundles.

Q03, bundle-counting in icon-units I

"How to count by bundling?"

5

Five fingers can be bundle-counted in pairs or triplets, allowing both an overload and an underload; and reported in a number-language sentence with a subject & a verb & a predicate as e.g. T = 2 **3s**.

 $||||| \bullet H ||| \bullet H H |\bullet H H = \frac{H H}{H} |\bullet H H |\bullet H H = \frac{H H}{H} |\bullet H H |\bullet H H = \frac{H H}{H} |\bullet H H |\bullet H H = \frac{H H}{H} |\bullet H H |\bullet H H = \frac{H H}{H} |\bullet H H |\bullet H H = \frac{H H}{H} |\bullet H H |\bullet H = \frac{H H}{H} |\bullet H H |\bullet H = \frac{H H}{H} |\bullet H H |\bullet H = \frac{H H}{H} |$

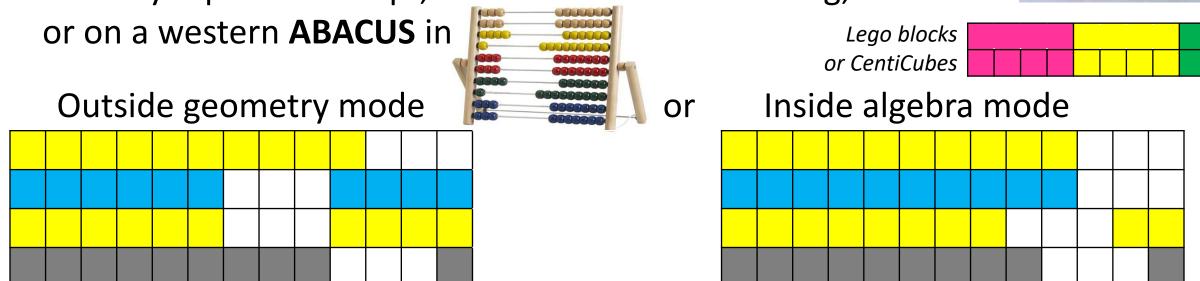
T = 5 = 1Bundle3 2s = 2B1 2s = 3B-1 2s = 1BB1 2s

- Cup- & decimal-writing separates inside bundles from outside singles:
 - 5 = 1]3 2s = 2]1 2s = 3]-1 2s = 1]]0]1 2s

= 1.3 2s = 2.1 2s = 3.-1 2s = 10.1 2sLikewise, if counting in ten-bundles: T = 57 = 5B7 = 4B17 = 6B-3 tens

Q03, bundle-counting in icon-units II

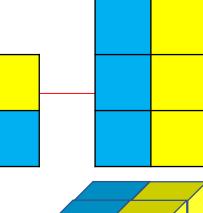
We may report with cup-, bundle- or decimal-writing,

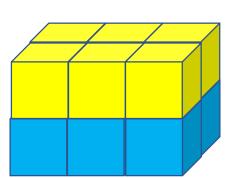


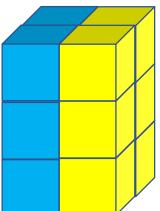
MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

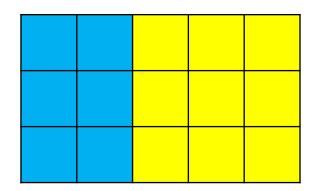
Switching & uniting & splitting units

- Turning a 2D block will change the unit T = 2 **3s** = 2x3 \rightarrow T = 3 **2s** = 3x2, So T = 2x3 = 3x2 (*The Commutative law*)
- Turning a 3D block will also change the unit So T = 2x(2x3) = (2x2)x3 (*The Associative law*)
- A block may split into two parts T = 3 5s = 3 2s + 3 3s or So T = 3x5 = 3x(2+3) = 3x2 + 3x3 (The Distributive law)









Q04, calculators predict

"Can a calculator predict a counting result?"

We may see the <u>division</u> sign as an icon for a broom wiping away bundles: 9/4 means 'from 9, wipe away bundles of 4s'.

- The calculator says '2.some', thus predicting it can be done 2 times. Now the <u>multiplication</u> sign iconizes a lift stacking the bundles into a block.
- Finally, the <u>subtraction</u> sign iconizes the trace left when dragging away the block to look for unbundled singles.
- With '9-2x4 = 1' the calculator predicts that 9 can be recounted as 2B1 4s.

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

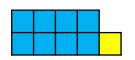
\mathbf{Q} 04, counting creates 2 counting formulas

<i>ReCount</i>	from a total T , T/B times,
T = (T/B) x B	Bs is taken away and stacked
<i>ReStack</i>	from a total T , T–B is left, when
T = (T–B) + B	B is taken away and placed next-to

As sentences of the number language, Formulas Predict:

Predicting that **T** = 9 = 2.1 **4s**:

]][





MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

${ m Q04}$, the recounting formula is a core formula

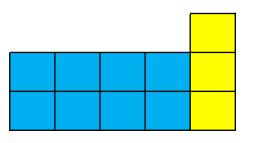
T = (**T**/**B**)***B** saying 'from T, T/B times, Bs can be taken away', is all over:

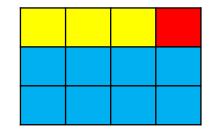
y = k * x	
$\Delta y = (\Delta y / \Delta x) * \Delta x = m * \Delta x$	
dy = (dy/dx) * dx = y' * dx	Δγ
a = (a/b) * b = tanA * b	Δx
\$ = (\$/kg) * kg = price * kg	а
meter = (meter/second) * second = velocity * second	A b
	$\Delta y = (\Delta y / \Delta x) * \Delta x = m * \Delta x$ dy = (dy/dx) * dx = y' * dx a = (a/b) * b = tanA * b \$ = (\$/kg) * kg = price * kg

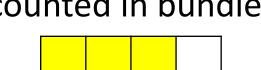
Q05, unbundled as decimals or negatives or fractions 0.3 **4s** or 0.-1 **4s** or 3/4 **4s**

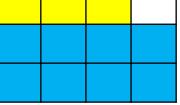
"Where to put the unbundled singles?" When counting by bundling, the unbundled singles can be placed NextTo the block OnTop of the block

counted as a block of **1s** counted as a bundle counted in bundles

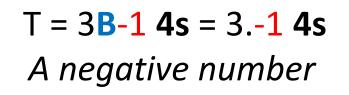








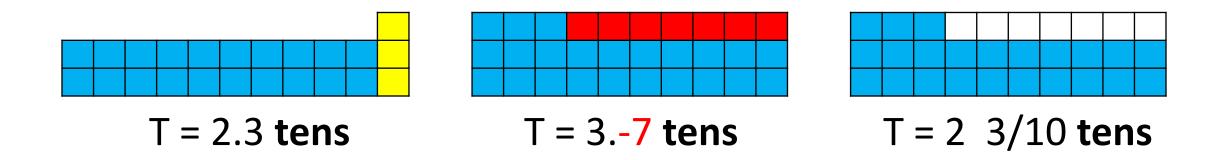
T = 2**B**3 **4s** = 2.3 **4s** *A decimal number*



T = 2 3/4 **4s** *A fraction*

${ m Q05}$, counting in tens

"Where to put the unbundled singles with tens?" Counting in tens, an outside Total of 2 **tens** & 3 can be described inside as T = 23 if leaving out the unit, or as



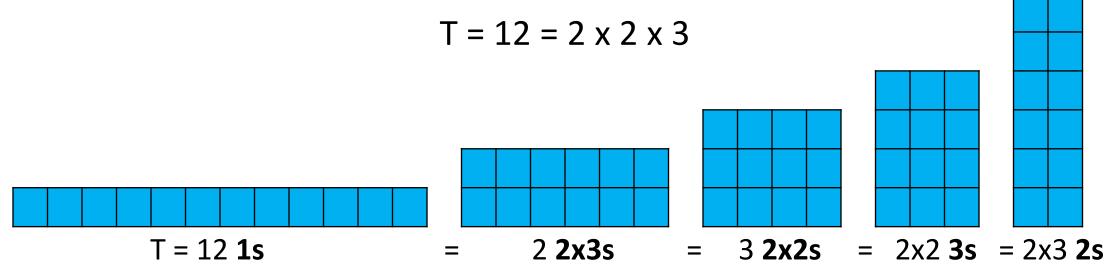
Q06, prime & foldable bundle-units

"When can blocks be folded in like bundles?" The block T = 2 **4s** = 2 x 4 has 4 as the bundle-unit. Turning over gives $T = 4 2s = 4 \times 2$, now with 2 as the bundle-unit. **4s** can be folded in another bundle as 2 **2s**, whereas 2s cannot. (1 is not a bundle, nor a unit since a bundle-of-bundles stays as 1). We call 2 a prime bundle-unit and 4 a foldable bundle-unit, 4 = 2 2s. A block of 3 2s cannot be folded. A block of 3 **4s** can be folded: T = 3 **4s** = 3 x (2 x 2) = (3 x 2) x $\overline{2} = 2$ **3x2s**. A number is called **even** if it can be written with 2 as the unit, else **odd**.

$${
m Q07}$$
, finding possible units

"What are possible units in T = 12?"

Units come from folding in prime units:



${ m Q08}$, recounting in a different unit

"How to change a unit?"

The recount-formula allows changing the unit.

Asking T = 3 **4s** = ? **5s**, the recount-formula gives T = 3 **4s** = (3x4/5) **5s**.

Entering 3x4/5, the answer '2.some' shows that a block of 2 5s can be taken away.

With 3x4–2x5, the answer '2' shows that 3 **4s** can be recounted as 2B2 **5s** or 2.2 **5s**.

3x4/52.some3x4 - 2x52

Change Unit = Proportionality

Q09, recounting from tens to icons

"How to change unit from tens to icons?" Asking 'T = 2.4 **tens** = 24 = ? **8s**', we just recount 24 in **8s**: T = 24 = (24/8)x8 = 3x8 = 3 **8s**.

Formulated as an equation we use u for	To keep its size, a block changing its unit
the unknown number, u x8 = 24.	must also change its height.
Recounting 24 in 8s shows that <i>u</i> is 24/8	
attained by moving 8	
to opposite side - with opposite sign	T = 2.4 tens = 3 8s

Q10, recounting from icons to tens (multiplication) 37s = ?tens

"How to change unit from icons to tens?"

Asking 'T = 3 7s = ? tens', the recount-formula cannot be used since the calculator has no ten-button. However, it gives the answer directly by using multiplication alone: T = 3 7s = 3x7 = 21 = 2.1 tens, only it leaves out the unit and the decimal point.

Alternatively, we may use 'less-numbers', so 7 = **ten** less 3

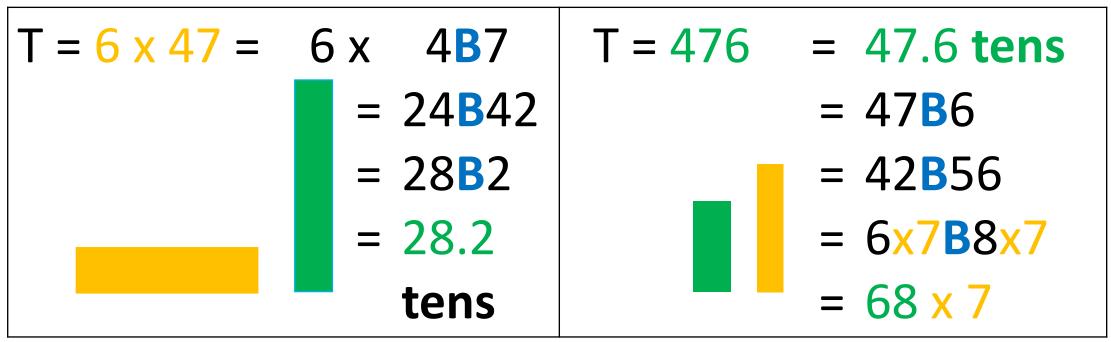
T = 3x7 = 3 x (ten | ess 3) = 3 x ten | ess 3x3 = 3ten | ess 9 = 2ten 1 = 21,

or with 9 = **ten** less 1:

T = 3ten less (ten less1) = 2ten lessless 1 = 2ten & 1 = 21. showing that 'lessless' cancel out

Recounting large numbers in or from tens: *same size, but new form*

Recounting 6 47s in tens Recounting 476 in 7s BundleWriting seprates **INSIDE** bundles from **OUTSIDE** singles



Q11, double-counting in two units creates bridging PerNumbers & proportionality

"How to double-count in two units?" DoubleCounting in kg & \$, we get **4kg = 5\$** or 4kg **per** 5\$ = 4kg/5\$ = 4/5 kg/\$ = a PerNumber.

With 4kg bridged to 5\$ we answer questions by recounting in the per-number. **Questions**:

7kg = ?\$	8\$ = ?kg
$7kg = (7/4) \times 4kg$	8\$ = (8/5) x 5\$
= (7/4) x 5\$ = 8.75\$	$= (8/5) \times 4$ kg $= 6.4$ kg

Answer: *Recount in the PerNumber (Proportionality)*

ake

Q12, double-counting in the same unit creates fractions

"How to double-count in the same unit?"

Double-counted in the same unit, per-numbers are fractions, 2\$ per 9\$ = 2/9, or percentages, 2 per 100 = 2/100 = 2%.

To find a fraction or a percentage of a total, again we just recount in the per-number.

- Taking 3 per 4 = taking ? per 100. With 3 bridged to 4, we recount 100 in 4s: 100 = (100/4)*4 giving (100/4)*3 = 75, and 75 per 100 = 75%.
- Taking 3 per 4 of 60 gives ?. With 3 bridged to 4, we recount 60 in 4s:

60 = (60/4)*4 giving (60/4)*3 = 45.

• Taking 20 per 100 of 60 gives ?. With 20 bridged to 100, we recount 60 in 100s: 60 = (60/100)*100 giving (60/100)*20 = 12.

We observe that per-numbers and fractions are not numbers, but operators needing a number to become a number.

Q12, enlarging or shortening units

"How to enlarge or shorten units in fractions?"

Taking 2/3 of 12 means taking 2 per 3 of 12.

With 2 bridged to 3, we recount 12 in **3s**, 12 = (12/3)*3 = 4*3

So 4 times we can take 2, i.e. 8 of the 12. Thus 2 per 3 = 8 per 12.

This may be used for enlarging or shortening fractions by inserting or removing the same unit above and below the fraction line:

$$\frac{2}{3} = \frac{2}{3} \frac{4s}{4s} = \frac{2^{*}4}{3^{*}4} = \frac{8}{12} \quad \bullet \quad \frac{8}{12} = \frac{2^{*}4}{3^{*}4} = \frac{2}{3} \frac{4s}{4s} = \frac{2}{3} \quad \bullet \quad \frac{12abc}{8a} = \frac{3^{*}4^{*}a^{*}b}{2^{*}4^{*}a} = \frac{3^{*}b}{2} \frac{4as}{2} = \frac{3b}{2}$$

\mathbf{Q} 13, recounting the sides in a block

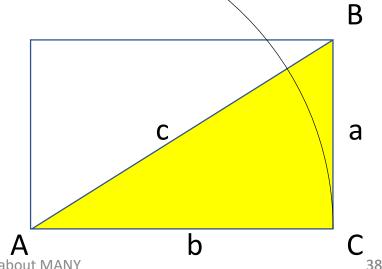
Geometry means to measure earth in Greek. The earth can be divided in triangles; that can be divided in right triangles; that can be seen as <u>a block halved by its</u> <u>diagonal</u> thus having three sides: <u>the base b</u>, <u>the height a</u> and <u>the diagonal c</u> connected by the Pythagoras formula. And connected with the angles by formulas recounting a side in the other side or in the diagonal:

A+B+C = 180

a*a + b*b = c*c (the Pythagoras formula)

sinA = a/c; cosA = b/c; tanA = a/b =
$$\Delta y/\Delta x$$
 = gradient

Circle: circum./diam. = π = n*tan(180/n) for n large



Q14, double-counting gives per-numbers in STEM multiplication formulas I

STEM (Science, Technology, Engineering, Math) typically contains multiplication formulas with per-numbers coming from double-counting. Examples:

- kg = (kg/cubic-meter) x cubic-meter = density x cubic-meter
- force = (force/square-meter) x square-meter = pressure x square-meter
- meter = (meter/sec) x sec = velocity x sec
- energy = (energy/sec) x sec = Watt x sec
- energy = (energy/kg) x kg = heat x kg

Q14, double-counting gives per-numbers in STEM multiplication formulas II

Extra STEM examples:

- gram = (gram/mole) x mole = molar mass x mole;
- Δ momentum = (Δ momentum/sec) x sec = force x sec;
- Δ energy = (Δ energy/ meter) x meter = force x meter = work;
- energy/sec = (energy/charge) x (charge/sec) or Watt = Volt x Amp;
- dollar = (dollar/hour) x hour = wage x hour;
- dollar = (dollar/meter) x meter = rate x meter
- dollar = (dollar/kg) x kg = price x kg.

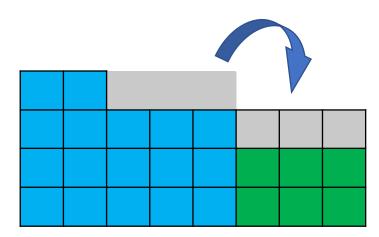
Q15, navigating on a squared paper

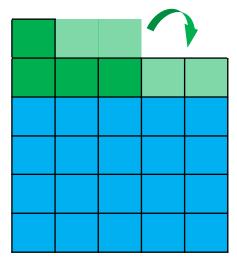
First steps into coordinate geometry, to always keep algebra and geometry together.

"Collect treasures on the rocks "	"Plan a trip to treasure island"
Three rocks are placed on a squared paper.	Departure point: 3cm out & 2cm up
The rocks have the values -1, 1, and 2.	Destination point: 7cm out & 4cm up.
A journey begins in the midpoint.	Plan a voyage with 1 out per day.
Two dices tell the out- and up- change,	How many days before reaching the island?
where odd numbers are negative.	What is your position after 2 days?
How many points before reaching the edge?	What is your position after n days?
Predict and measure angles on the journey.	What is the angle traveled?

Counted & recounted, Totals can be added

BUT: Ne	extTo 🗪	or	OnTop
4 5s + 2 3	3s = 3 B 2 8s	4 5s + 2 3s =	4 5s + 1 B 1 5s = 5 B 1 5s
The areas a	are integrated	The units are	changed to be the same
Adding area	as = Integration	Change u	nit = Proportionality





Four ways to unite into a Total

A number-formula $T = 345 = 3BB4B5 = 3*B^2 + 4*B + 5$ (a polynomial) shows the four ways to add: +, *, ^, next-to block-addition (integration). <u>Addition</u> and <u>multiplication</u> add changing and constant unit-numbers. <u>Integration</u> and <u>power</u> add changing and constant per-numbers. We might call this beautiful simplicity the 'Algebra Square'.

Operations unite	changing	constant
Unit-numbers <i>m, s, \$, kg</i>	T = a + n	T = a * n
Per-numbers m/s, \$/kg, m/(100m) = %	T =∫a dn	T = a^n

The 4 uniting operations $(+, *, \wedge, \int)$ each has a reverse splitting operation: Addition has <u>subtraction</u> (–), and multiplication has <u>division</u> (/). Power has factor-finding (<u>root</u>, \vee) and factor-counting (<u>logarithm</u>, log). Integration has per-number finding (<u>differentiation</u> dT/dn = T').

Operations unite / <i>split into</i>	changing	constant
Unit-numbers m, s, \$, kg	T = a + n T - a = n	T = a * n <i>T/n = a</i>
Per-numbers <i>m/s, \$/kg, m/(100m) = %</i>	T = ∫ a dn <i>dT/dn = a</i>	$T = a^n$ $\log_a T = n, \ {}^n \sqrt{T} = a$

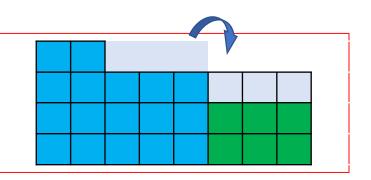
Reversing operations is solving equations, done by moving to **opposite side** with **opposite sign**.

Question Guided Adding Curriculum

A question guided re-enchanting ADDING curriculum could be named '<u>Mastering Many by uniting and splitting constant and</u> <u>changing unit-numbers and per-numbers</u>'.

- A corresponding pre-service and in-service question guided teacher education can be found at the MATHeCADEMY.net.
- Remedial curricula for classes stuck in traditional mathematics can be found there also.

Q21, next-to addition



"With T1 = 4 5s and T2 = 2 3s, what is T1+T2 when added next-to as 8s?"

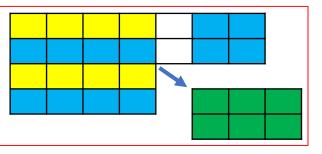
<u>Outside</u>, next-to addition geometrically means adding areas. Next-to addition is also called integral calculus.

<u>Inside</u>, the recount formula algebraically predicts the result. Here multiplication precedes addition.

 $T = (T/B) \times B$

= ((4x5 + 2x3)/8) x 8 = 3.2 8s

(4x5 + 2x3)/8 3.some (4x5 + 2x3) - 3x8 2



"If T1 = 2 3s and T2 add next-to as 4 7s, what is T2?"

Outside, we remove the initial block T1 and recount the rest in 4s.

Thus reversed next-to addition geometrically means subtracting areas.

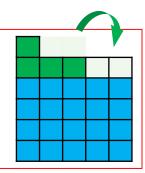
Reversed next-to addition is also called differential calculus.

Inside, the recount formula algebraically predicts the result.

Here subtraction precedes division; which is natural as reversed integration.

(4x7 – 2x3)/4 5.some (4x7 – 2x3) – 5x4 2

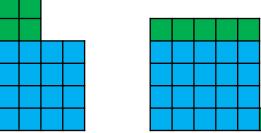
$${
m Q23}$$
, on-top addition

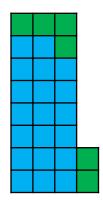


"With T1 = 4 5s and T2 = 2 3s, what is T1+T2 when added on-top?"

<u>Outside</u>, on-top addition geometrically means changing units. On-top addition thus often involves recounting (proportionality).

T = **4 5s** + **2 3s** = 4 **5s** + 1.1 **5s** = 5.1 **5s**



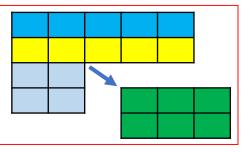


<u>Inside</u>, the recount formula algebraically predicts the result. Here again, multiplication precedes addition.

$$T = (T/B) \times B$$

(4x5 + 2x3)/5 5.some (4x5 + 2x3) - 5x5 1

 Q_{24} , reversed on-top addition



"T1 = 2 **3s** and how many **5s** (T2) add on-top as 4 **5s**?" <u>Outside</u>, we remove the initial block T1 and recount the rest in **5s**. Thus reversed next-to addition geometrically means subtracting areas. Reversed on-top addition is also called differential calculus. <u>Inside</u>, the recount formula algebraically predicts the result. Here again, subtraction precedes division.

$$T2 = (T2/B) \times B$$

8

4

2

7 1

В

Q25, adding tens on-top

"If T1 = 23 and T2 = 48, what is T1+T2 as **tens**?"

Outside and inside, we recount overloads by changing 1 tens to 10 1s.

T = **23** + **48** = **2ten3** + **4ten8** = **6ten11** = **6ten1ten1** = **7ten1** = **7t**

T = **23**6 + **4**87 = 2**tenten3ten**6 + **4tenten8ten**7 = 6**tenten**11**ten**13 = ..[

T1+T2 = 23 + 48= 2B3 + 4B8= 6B11= 7B1

= 71

T = 236 + 487= 2BB3B6 + 4BB8B7

- = 6**BB**11**B**13
- = 6**BB**12**B**3

= 7**BB**2**B**3 = 723

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 I
 I
 I

 I
 <

"If T1 = 23 and T2 add to T = 71, what is T2 as **tens**?"

Outside and inside, we recount underloads by changing 1 tens to 10 1s.

7		1		4	8
	-2		-3		
В	В			В	

T = 956 - 487 = 9tenten5ten6 - 4tenten8ten7 = 5tenten-3ten-1 = .	•••
--	-----

T2 = 71 - 23	T2 = 956 – 487
= 7 B 1 – 2B 3	= 9 BB 5 B 6 - 4 BB 8 B 7
= 5 B-2	= 5 BB-3B-1
= 4 B 8	= 4 BB 7 B -1
= 48	= 4 BB 6 B 9
	= 469

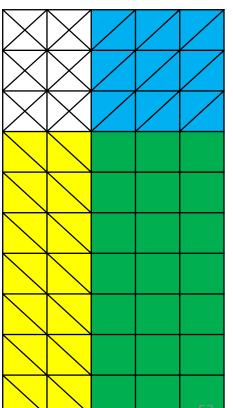
\mathbf{Q} 27, from icons to tens, multiplication

A multiplication table recounts icon-blocks in ten-blocks: T = 7 **3s** = ? **Tens.** To recount 7 **3s** in **tens** we can use that 7 is **ten** less3, and 3 is 5 less2: From the 10 **5s** we remove 3 **5s** (/) and 2 **tens** (\). But then we must add the 3 **2s** that was removed twice. T = 7x3 = (ten - 3)x(5 - 2) = tenx5 - 3x5 - tenx2 + 3x2= 50 - 15 - 20 + 6 = 21.

Shown on a western ten by ten abacus as a 10 by 5 block.

This roots the algebra formula showing that -x - is + i

$$(a-b) \times (c-d) = a \times c - a \times d - b \times c + b \times d$$



"What is 7 8s recounted in tens?"

Using underload-numbers after 5, we recount to remove underloads:

$T = 7 \times 8 = 7 \times B^{-2} = 7B^{-14} = 7B - 1B4$	$T = 7 \times 8 = B-3 \times B-2 = 1BB - 3B - 2B + 6$
= 6 B-4 = 5 B 6 = 56	$= 10\mathbf{B} - 3\mathbf{B} - 2\mathbf{B} + 6 = 5\mathbf{B}6 = 56$

	2	3	4	5	B-4	B-3	B-2	B-1
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

	2	3	4	5	B-4	B-3	B-2	B-1
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
B-4	12	18	24	30	36	42	48	54
B-3	14	21	28	35	42	49	56	63
B-2	16	24	32	40	48	56	64	72
B-1	18	27	36	45	54	63	72	81

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

Q27, Recounting BundleBundles in tens (squares: ..., 4 4s = ? tens, 5 5s = ? tens, ...)

Using the multiplication table, we recount the different bundle-bundles (called squares) in **tens**:

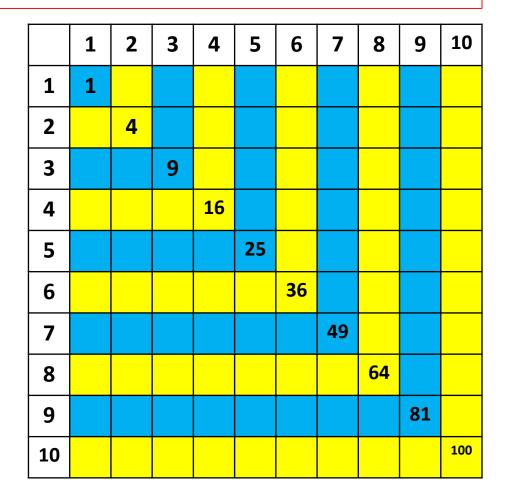
S4 = 4 **4s** = 4x4 = 16

S5 = 5 **5s** = 5x5 = 25, etc.

We see that to get to the next square we add the sides twice, + 1:

```
(n+1)^*(n+1) = n^*n + 2^*n + 1, or
```

 $(n+1)^2 = n^2 + 2^*n + 1$



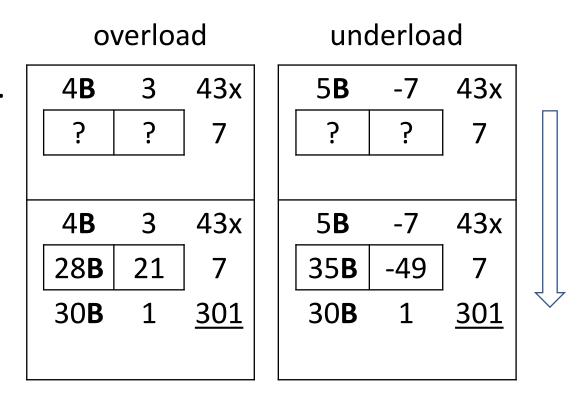
Q27, recounting from icons to tens (multiplication)

Recount 43 7s in tens:

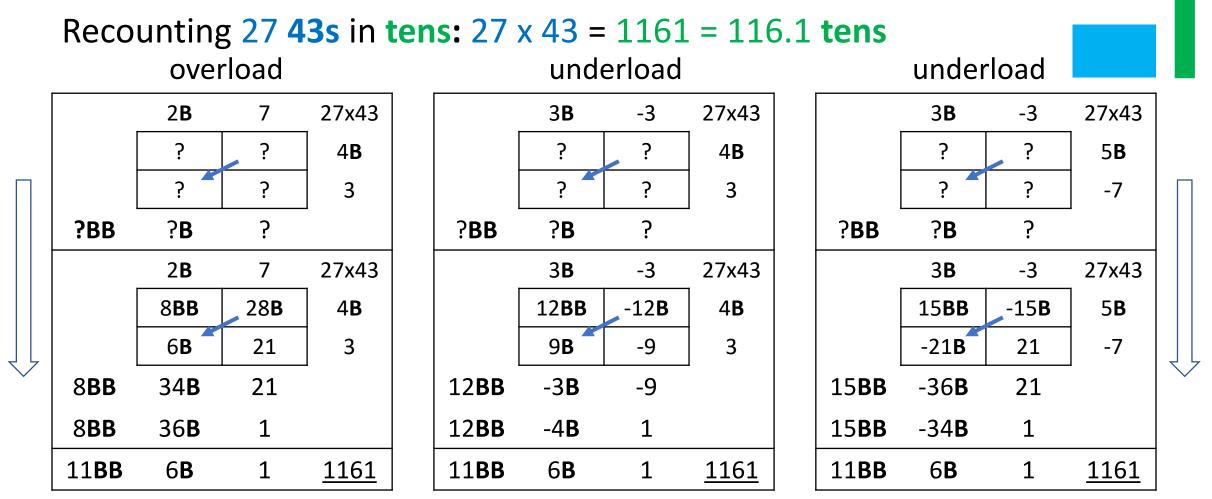
T = 43x7 = 301 = 30.1 tens

Horizontally we write 43 as 4ten3 or 4B3. Vertically, we write 7. Multiplying, we get 28B and 21. So, T = 43x7 = 28B21 = 30B1 = 301.

With underload, 43 is 5ten-7 or 5B-7. Vertically, we write 7. Multiplying, we get 35B and -49. So, T = 43x7 = 35B-49 = 30B1 = 301.

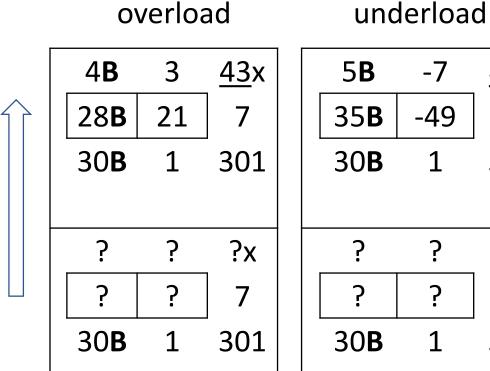


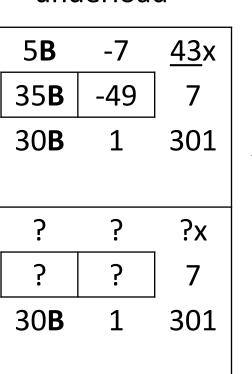
Q_{27} , recounting 27 43s in tens (multiplication)



Q28, recounting from tens to icons (division)

Recount 30.1 tens in 7s: 301/7 = 43



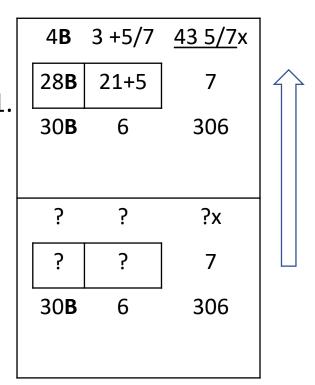


Recount 30.6 tens in 7s: 306/7 = 43 5/7

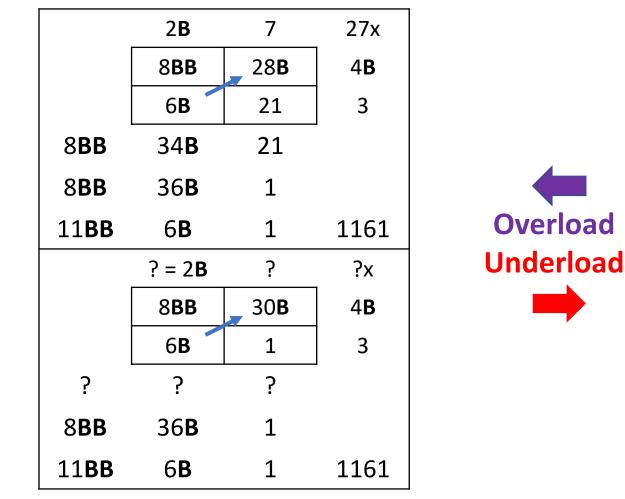
Multiplying is top-down; division is bottom-up.

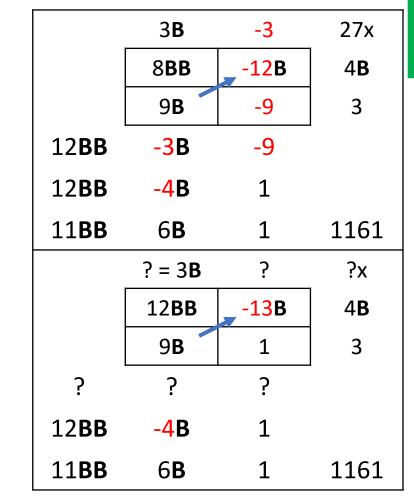
Below, we write 301 = 30**B**1. Above we recount 301 as 28**B**21 to count in **7s**. So, T = 301 = 43x7.

Below, we write 306 as 28**B**26 first, then as 28**B**21 + 5 to count in **7s**. So, T = 306 = 43x7 +5.



Q_{28} , recounting 1161 in 43s (division)





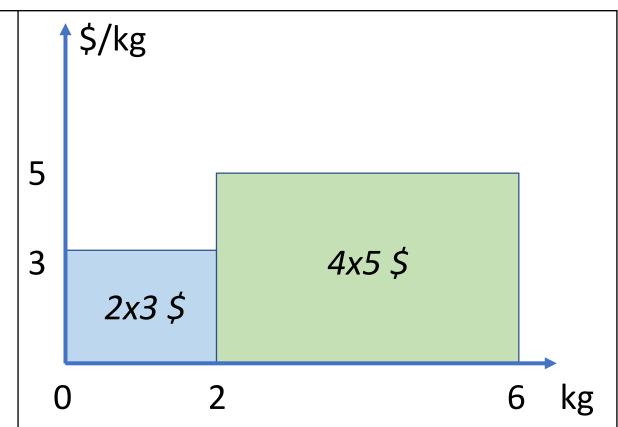
MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

Overload

Q29, adding PerNumbers as areas (integration)

"2kg at 3\$/kg + 4kg at 5\$/kg = 6kg at ? \$/kg?"

- (2+4) kg at ?\$/kg
- Unit-numbers add on-top.
- Per-numbers add next-to as **areas** under the per-number graph. Here multiplication precedes addition.



Q30, subtracting PerNumbers (differentiation)

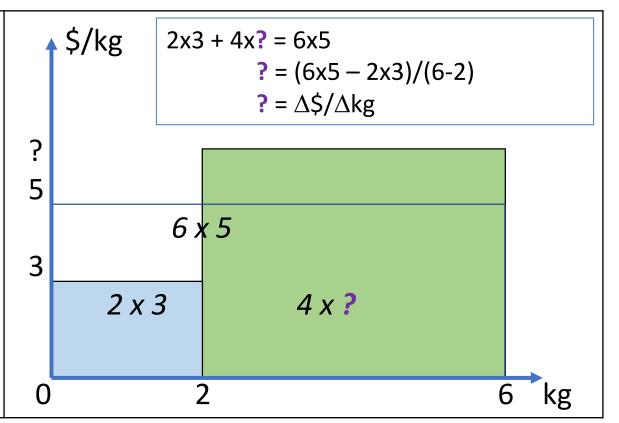
"2kg at 3\$/kg + 4kg at what = 6kg at 5\$/kg?"

2 kg at 3 \$/kg + 4 kg at **?** \$/kg

6 kg at 5 \$/kg

Outside, we remove the initial 2x3 block and recount the rest in 4s. Geometrically, reversed per-number addition means subtracting areas to be reshaped, called differential calculus.

Inside, the recount-formula algebraically predicts the result. Here subtraction (giving a change, Δ) precedes division.



Never add without units, the fraction paradox

The Teacher	The Students
What is 1/2 + 2/3?	Well, 1/2 + 2/3 = (1+2)/(2+3) = 3/5
No! 1/2 + 2/3 = 3/6 + 4/6 = 7/6	But 1/2 of 2 cakes + 2/3 of 3 cakes is 1+2 of 2+3 cakes, i.e. 3/5 of 5 cakes! How can it be 7 cakes out of 6 cakes?
Inside this classroom 1/2 + 2/3 IS 7/6 !	

Fractions are not numbers, but operators, needing numbers to become numbers.

2+3 IS 5! <u>No</u>, 2weeks + 3days is 17days; and 2m + 3cm = 203cm. **2*3 IS 6!** <u>Yes</u>, since 3 is the unit, and 2 **3s** can be recounted to 6 1s. *Adding without units: MatheMatism.*

Mixing English and metric units made NASA's Mars Climate Orbiter fail in 1999.

Q31, adding unspecified numbers

"Only add like units, so how to add $T = 4ab^2 + 6abc$?" Here units come from folding (factoring):

- $T = 4ab^2 + 6abc = T1 + T2$
 - =2*2*a*b*b + 2*3*a*b*c
 - = 2 * b * (2 * a * b) + 3 * c * (2 * a * b)
 - = (2*b*+3*c*) * **2***ab*
 - $= 2b + 3c 2ab_s$

a factor-filter

4 <i>ab</i> ²	2	2	а	b	b
6abc	2	3	а	b	С
unit	2		а	b	
T1:		2			b
T2:		3			С

uc

C²

u

С

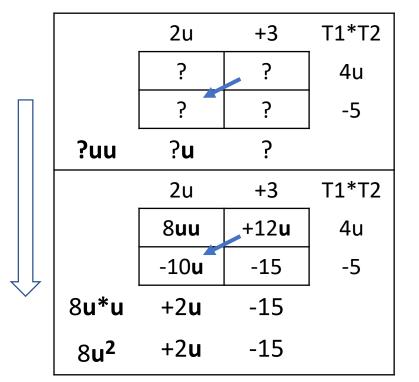
u

U²

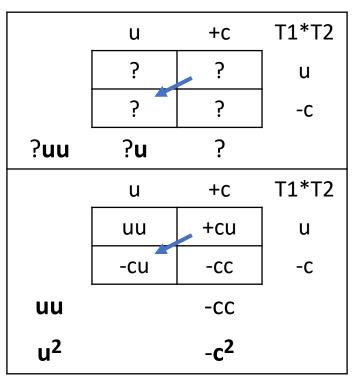
uc

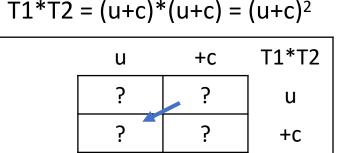
"How to multiply unspecified two-digit numbers T1 and T2?"

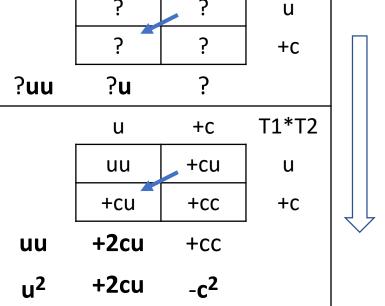
T1*T2 = (2u+3)*(4u-5)



T1*T2 = (u+c)*(u-c)







Reversed Addition = Solving Equations

OppoSite Side	NextTo	
$2 x ? = 8 = (8/2) \times 2$	2 + ? = 8 = (8-2) + 2	2 3s + ? 5s = 3.2 8s
? = 8/2 ? = 8-2		? = (3.2 8s – 2 3s)/5
Solved by ReCounting	Solved by ReStacking	Solved by differentiation: $(T-T1)/5 = \Delta T/5$

Hymn to Equations

Equations are the best we know, they are solved by isolation. But first, the bracket must be placed around multiplication. We change the sign and take away and only x itself will stay. We just keep on moving, we never give up. So feed us equations, we don't want to stop!

Solving equations by recounting, we may bracket Group Theory from Abstract Algebra

ManyMath

$2 \times u = 8 = (8/2) \times 2$	Solved by re-counting 8 in 2s
<i>u</i> = 8/2 = 4	Move: Opposite Side with OppoSite Sign

MetaMath (Don't test, but DO remember the bi-implication arrows)

$\begin{array}{c} \updownarrow \\ \updownarrow \end{array}$	2 x <i>u</i> = 8	Multiplication has 1 as its neutral element, and 2 has ½ as its inverse element	
	$(2 \times u) \times (\frac{1}{2}) = 8 \times (\frac{1}{2})$ $(u \times 2) \times (\frac{1}{2}) = 4$ $u \times (2 \times (\frac{1}{2})) = 4$	Multiplying 2's inverse element ½ to both number-names	
\downarrow	$(u \times 2) \times (\frac{1}{2}) = 4$	Applying the commutative law to u x 2; 4 is the short number-name for 8 x 2	
\downarrow	$u \ge (2 \ge (\frac{1}{2})) = 4$	Applying the associative law	
\downarrow	<i>u</i> x 1 = 4	Applying the definition of an inverse element	
↓ ↓	<i>u</i> = 4	Applying the definition of a neutral element. With arrows a test is not needed.	

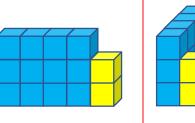
Conclusions

What Mastery of Many does the child have already?

• Children typically see Many as blocks with a number af bundles, and use flexible numbers with units and with over- or underloads

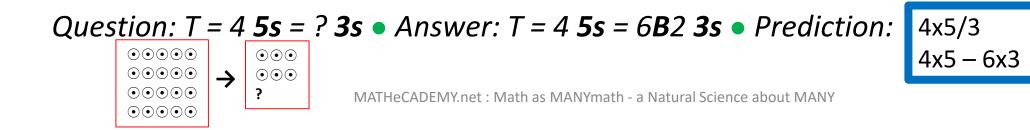
In ManyMath, BLOCKS are fundamental:

- in numbers: 456 = three blocks
- in algebra: adding blocks next-to or on-top
- in geometry: recounting half-blocks



1) Digits are (sloppy) icons, with as many sticks as they represent.

- 2) Totals are counted by bundling, giving <u>outside</u> geometrical multi-blocks,
 & (when turned to hide the units behind) <u>inside</u> algebraic bundle-numbers.
- 3) Operations are icons, showing the 3 counting steps: Removing bundles & stacking bundles & removing stacks to find the unbundled.
- 4) The operation order is division first, then multiplication, then subtraction. Addition next-to & on-top comes later after totals are counted & re-counted.
- 5) Counting & re-counting & double-counting is big fun, when predicted by a calculator with the recount formula: **T** = (**T**/**B**)**xB** (from T, T/B times, Bs can be taken away)



6.some

Comparing with a traditional math curriculum I

A traditional curriculum: operations on specified and unspecified numbers.

- Digits are given directly as symbols, without letting children discover digits as icons with as many strokes or sticks as they represent.
- Numbers are one-dimensional line-numbers with digits respecting a place value system, without letting children discover the thrill of two-dimensional bundling and stacking counting both <u>singles</u> and <u>bundles</u> and <u>bundles</u> etc., and that includes the unit.
- Seldom, if ever, 0 is included as '01, 02, 03' in the counting sequence to show the importance of bundling.

Comparing with a traditional math curriculum II

- Never children are told that eleven and twelve comes from the Vikings, counting '(ten and) 1 left', '(ten and) 2 left'.
- Never children use full number-language sentences, T = 2 **5s**, including both a subject & a verb & a predicate with a unit.
- Seldom children are asked to describe numbers after ten as 1B4 tens or 1ten4 or 1.4 tens with a unit and with a decimal point separating bundles and unbundled singles.
- Seldom 17 is recounted as 2B-3 or 2.-3 tens. Nor is 24 recounted as 1B14 tens or 3B-6 tens.

Comparing with a traditional math curriculum III

- Never it respects the natural order of operations. Instead it turns the order around by giving addition without units priority over subtraction & multiplication & division.
- In short, children never experience the enchantment of counting, re-counting and double-counting Many before being forced to add on-top only, thus neglecting next-to addition.

So, re-enchanting Many is the goal of the twin curriculum in Mastery of Many through respecting and developing the children's existing mastery and quantitative competence.

Proportionality shows the variety of mastery of Many I

Proportionality, **Q1**: "2kg costs 5\$, what does 7kg cost"; **Q2**: "What does 12\$ buy?" 1) <u>Regula de Tri (</u>rule of three)

Re-phrase with shifting units, the unknown at last. From behind, first multiply then divide.
Q1: '2kg cost 5\$, 7kg cost ?\$'. Multiply-then-divide gives the \$-number 7x5/2 = 17.5.
Q2: '5\$ buys 2kg, 12\$ buys ?kg'. Multiply-then-divide gives the kg-number 12x2/5 = 4.8.
2) Find the unit

Q1: 1kg costs 5/2\$, so 7kg cost 7x(5/2) = 17.5\$. **Q2**: 1\$ buys 2/5kg, so 12\$ buys 12x(2/5) = 4.8kg 3) Cross multiplication

Q1: 2/5 = 7/*u*, so 2**u* = 7*5, *u* = (7*5)/2 = 17.5. **Q2**: 2/5 = *u*/12, so 5**u* = 12*2, *u* = (12*2)/5 = 4.8

4) '<u>Re-counting</u>' in the 'per-number' 2kg/5\$ coming from 'double-counting' the total T.

Q1: T = 7kg = (7/2)x2kg = (7/2)x5\$ = 17.5\$; **Q2**: T = 12\$ = (12/5)x5\$ = (12/5)x2kg = 4.8kg.

Proportionality shows the variety of mastery of Many II

5) <u>Modeling</u> with linear functions using group theory from abstract algebra.

- A linear function f(x) = c*x from the set of positive kg-numbers to the set of positive \$-numbers, has the domain DM = {x∈R | x>0}.
- Knowing that $f(2) = c^*2 = 5$, this equation is solved by multiplying with the inverse element to 2 on both sides, and applying the associative law, and the definition of an inverse element, and of the neutral element under multiplication:

 $c^{*}2 = 5 \bullet (c^{*}2)^{*}\frac{1}{2} = 5^{*}\frac{1}{2} \bullet c^{*}(2^{*}\frac{1}{2}) = 5/2 \bullet c^{*}1 = 5/2 \bullet c = 5/2.$

- With $f(x) = 5/2^*x$, the inverse function is $f^{-1}(x) = 2/5^*x$.
- With 7kg, the answer is f(7) = 5/2*7 = 17.5\$.
- With 12\$, the answer is $f^{-1}(12) = 2/5*12 = 4.8$ kg.

Main parts of a ManyMath curriculum

Primary School – respecting and developing the Child's own 2D NumberLanguage

- Digits are Icons and Natural numbers are 2dimensional block-numbers with units
- BundleCounting & ReCounting before Adding
- NextTo Addition (PreSchool Calculus) before OnTop Addition
- Natural order of operations: divide, multiply, subtract, add on-top & next-to Middle school – integrating algebra and geometry, the content of the label 'math'
- DoubleCounting produces PerNumbers and fractions as operators needing numbers to become numbers, thus being added as areas (MiddleSchool Calculus)
- Geometry and Algebra go hand in hand always, so length becomes change and vv.
 High School integrating algebra and geometry to master CHANGE
- Change as the core concept: constant, predictable and unpredictable change
- Integral Calculus before Differential Calculus

Question guided teacher education

MATHeCADEMY.net

Teaches Teachers to Teach MatheMatics as ManyMath, a Natural Science about MANY.

To learn Math, Count & Add MANY, using the CATS method:

Count & Add in Time & Space

- Primary: C1 & A1 & T1 & S1
- Secondary: C2 & A2 & T2 & S2

MATHeCADEMY.net a VIRUSeCADEMY: ask Many, not the Instructor

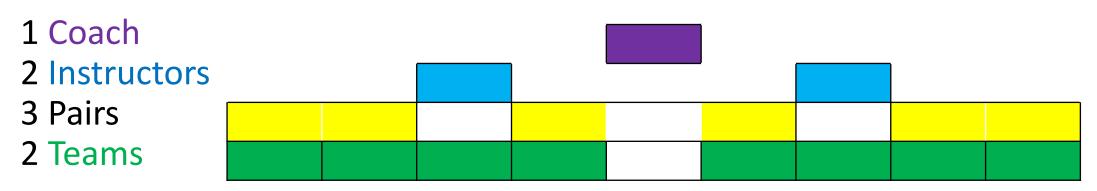
SUMMA		
	QUESTIONS	ANSWERS
C1	How to count Many?	By bundling and stacking the total T predicted by $T = (T/b)*b$
COUNT	How to recount 8 in 3s: $T=8=?$ 3s	T = 8 = ?*3 = ?3s, $T = 8 = (8/3)*3 = 2*3 + 2 = 2*3 + 2/3*3 = 22/3*3$
	How to recount 6kg in \$: T=6kg=?\$	If $4kg = 2$ \$ then $6kg = (6/4)*4kg = (6/4)*2$ \$ = 3\$
	How to count in standard bundles?	Bundling bundles gives a multiple stack, a stock or polynomial:
		$T = 423 = 4BundleBundle+2Bundle+3 = 4tenten2ten3 = 4*B^{2}+2*B+3$
C2	How can we count possibilities?	By using the numbers in Pascal's triangle
COUNT	How can we predict unpredictable	We 'post-dict' that the average number is 8.2 with the deviation 2.3.
	numbers?	We 'pre-dict' that the next number, with 95% probability, will fall in the
		confidence interval 8.2 ± 4.6 (average ± 2 *deviation)
A1	How to add stacks concretely?	By restacking overloads predicted by the restack-equation T= (T-b)+b
ADD	T=27+16= 2ten7+1ten6= 3ten13=?	T = 27+16 = 2 ten 7+1 ten 6 = 3 ten 13 = 3 ten 1 ten 3 = 4 ten 3 = 43
	How to add stacks abstractly?	Vertical calculation uses carrying. Horizontal calculation uses FOIL
A2	What is a prime number?	Fold-numbers can be folded: 10=2fold5. Prime-numbers cannot: 5=1fold5
ADD	What is a per-number?	Per-numbers occur when counting, when pricing and when splitting.
	How to add per-numbers?	The \$/day-number a is multiplied with the day-number b before added to
		the total \$-number T: $T2 = T1 + a*b$
T1	How can counting & adding be	By calculating backward, i.e. by moving a number to the other side of the
TIME	reversed ?	equation sign and reversing its calculation sign.
	Counting ? 3s and adding 2 gave 14.	$x^{*}3+2=14$ is reversed to $x = (14-2)/3$
	Can all calculations be reversed?	Yes. x+a=b is reversed to x=b-a, x*a=b is reversed to x=b/a, x^a=b is
		reversed to $x=a\sqrt{b}$, $a^x=b$ is reversed to $x=logb/loga$
T2	How to predict the terminal number	By using constant change-equations:
TIME	when the change is constant?	If Ko = 30 and $\Delta K/n = a = 2$, then K7 = Ko+a*n = 30+2*7 = 44
		If Ko = 30 and $\Delta K/K = r = 2\%$, then K7= Ko*(1+r)^n= 30*1.02^7= 34.46
	How to predict the terminal number	By solving a variable change-equation:
	when the change is variable, but	If Ko = 30 and dK/dx = K', then $\Delta K = K-Ko = \int K' dx$
S1	predictable? How to count plane and spatial	Demains a miles a material and a triangular share
SPACE	properties of stacks and boxes and	By using a ruler, a protractor and a triangular shape.
STACE	round objects?	By the 3 Greek Pythagoras', mini, midi & maxi
S2	How to predict the position of	By the 3 Arabic recount-equations: $\sin A=a/c$, $\cos A=b/c$, $\tan A=a/b$ By using a coordinate-system: If $Po(x,y) = (3,4)$ and if $\Delta y/\Delta x = 2$, then
SPACE	points and lines?	By using a coordinate-system: If $PO(x,y) = (3,4)$ and If $\Delta y/\Delta x = 2$, then $P1(8,y) = P1(x+\Delta x, y+\Delta y) = P1((8-3)+3,4+2*(8-3)) = (8,14)$
STACE	How to use the new calculation	$P_1(8,y) = P_1(x+\Delta x, y+\Delta y) = P_1((8-3)+3, 4+2^{-1}(8-3)) = (8,14)$ Computers can calculate a set of numbers (vectors) and a set of vectors
	technology?	(matrices)
QL	What is quantitative literature?	Quantitative literature tells about Many in time and space
QL.	Does quantitative literature also	The word and the number language share genres:
	have the 3 different genres: fact,	Fact is a since-so calculation or a room-calculation
	fiction and fiddle?	Fiction is an if-then calculation or a rate-calculation
	neuon and nucle?	Fiddle is a so-what calculation or a risk-calculation
		Figure is a so-what calculation of a fisk-calculation

SUMMARY

PYRAMIDeDUCATION

In PYRAMIDeDUCATION a group of 8 teachers are organized in

- 2 teams of 4 choosing 2 instructors and 3 pairs by turn.
- Each pair works together to solve Count&Add problems.
- The coach assists the instructors when instructing their team and when correcting their Count&Add assignments.
- Each teacher pays by coaching a new group of 8 teachers.



Number Icons ReCounting 7 in 5s & 3s & 2s A.3 as MANYmath - a Natural Scien about ANY

Tarp, A. (2018). Mastering Many by counting, recounting and doublecounting before adding on-top and next-to. *Journal of Mathematics Education, March 2018, 11*(1), 103-117.

COUNTING before **ADDING**

The Child's Own Twin Curriculum Count & ReCount & DoubleCount before Adding NextTo & OnTop

> master many manymath

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY