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Core papers 2017-18 

This selection contains four papers written in 2017 and 2018. The total collection of 

papers can be found at 

http://mathecademy.net/2017-math-articles/   

http://mathecademy.net/2018-articles-on-math-education/ 

01. The Simplicity of Mathematics Designing a STEM-based Core Math 
Curriculum for Outsiders and Migrants. 

This article is due to be published in the next number 34 of Philosophy of 

Mathematics Education Journal. The abstract says that Swedish educational shortages 

challenge traditional mathematics education offered to migrants. Mathematics could 

be taught in its simplicity instead of as ‘meta-matsim’, a mixture of ‘meta-matics’ 

defining concepts as examples of inside abstractions instead of as abstractions from 

outside examples; and ‘mathe-matism’ true inside classrooms but seldom outside as 

when adding numbers without units. Rebuilt as ‘many-matics’ from its outside root, 

Many, mathematics unveils its simplicity to be taught in a STEM context at a 2year 

course providing a background as pre-teacher or pre-engineer for young migrants 

wanting to help rebuilding their original countries. 

02. Addition-free migrant-math rooted in STEM re-counting formulas  

A short version of the article above was sent to the Topic Working Group 26 on 

STEM mathematics at the CERME 11 conference. It was rejected as a paper, so it 

was redrawn.  

The abstract says that a curriculum architect is asked to avoid traditional mistakes 

when designing a curriculum for young migrants that will allow them to quickly 

become STEM pre-teachers and pre-engineers. Typical multiplication formulas 

expressing re-counting in different units suggest an addition-free curriculum. To 

answer the question ‘How many in total?’ we count and re-count totals in the same or 

in a different unit, as well as to and from tens; also, we double-count in two units to 

create per-numbers, becoming fractions with like units. To predict, we use a re-count 

formula as a core formula in all STEM subjects. 

03. Mastering Many by Counting, Re-counting and Double-counting before 
Adding On-top and Next-to 

This article was published in the Journal of Mathematics Education, March 2018, 

11(1), 103-117. 

The abstarct says that observing the quantitative competence children bring to school, 

and by using difference-research searching for differences making a difference, we 

discover a different ‘Many-matics’. Here digits are icons with as many sticks as they 

represent. Operations are icons also, used when bundle-counting produces two-

dimensional block-numbers, ready to be re-counted in the same unit to remove or 

create overloads to make operations easier; or in a new unit, later called 



 

proportionality; or to and from tens rooting multiplication tables and solving 

equations. Here double-counting in two units creates per-numbers becoming fractions 

with like units; both being, not numbers, but operators needing numbers to become 

numbers. Addition here occurs both on-top rooting proportionality, and next-to 

rooting integral calculus by adding areas; and here trigonometry precedes geometry. 

04. A Twin Curriculum Since Contemporary Mathematics May Block the 
Road to its Educational Goal, Mastery of Many 

This article was accepted at the conference ICMI Study 24, School Mathematics 

Curriculum Reforms: Challenges, Changes and Opportunitie, in Tsukuba Japan, 26-

30 November 2018. The abstract says that mathematics education research still leaves 

many issues unsolved after half a century. Since it refers primarily to local theory, we 

may ask if grand theory may be helpful. Here philosophy suggests respecting and 

developing the epistemological mastery of Many children bring to school instead of 

forcing ontological university mathematics upon them. And sociology warns against 

the goal displacement created by seeing contemporary institutionalized mathematics 

as the goal needing eight competences to be learned, instead of aiming at its outside 

root, mastery of Many, needing only two competences, to count and to unite, 

described and implemented through a guiding twin curriculum. 

05. Counting before Adding, The Child’s Own Twin Curriculum, Count & 
ReCount & DoubleCount before Adding NextTo & OnTop 

This is a Power Point Presentation made from the article above. 

 

Allan Tarp, Aarhus, November 2018 
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THE SIMPLICITY OF MATHEMATICS DESIGNING A STEM-BASED 

CORE MATH CURRICULUM FOR OUTSIDERS AND MIGRANTS 

Swedish educational shortages challenge traditional mathematics education offered to migrants. 

Mathematics could be taught in its simplicity instead of as ‘meta-matsim’, a mixture of ‘meta-

matics’ defining concepts as examples of inside abstractions instead of as abstractions from outside 

examples; and ‘mathe-matism’ true inside classrooms but seldom outside as when adding numbers 

without units. Rebuilt as ‘many-matics’ from its outside root, Many, mathematics unveils its 

simplicity to be taught in a STEM context at a 2year course providing a background as pre-teacher 

or pre-engineer for young migrants wanting to help rebuilding their original countries. 

Decreased PISA Performance Despite Increased Research 

Being highly useful to the outside world, mathematics is a core part of institutionalized education. 

Consequently, research in mathematics education has grown as witnessed by the International 

Congress on Mathematics Education taking place each 4 year since 1969. Likewise, funding has 

increased as seen e.g. by the creation of a National Center for Mathematics Education in Sweden. 

However, despite increased research and funding, the former model country Sweden has seen its 

PISA result decrease from 2003 to 2012, causing OECD to write the report ‘Improving Schools in 

Sweden’ describing its school system as ‘in need of urgent change’: 

PISA 2012, however, showed a stark decline in the performance of 15-year-old students in all 

three core subjects (reading, mathematics and science) during the last decade, with more than 

one out of four students not even achieving the baseline Level 2 in mathematics at which 

students begin to demonstrate competencies to actively participate in life. (OECD, 2015a, p. 3). 

Other countries also experience declining PISA results. Since mathematics education is a social 

institution, social theory might be able to explain 50 years of unsuccessful research in mathematics 

education. 

Social Theory Looking at Mathematics Education 

Imagination as the core of sociology is described by Mills (1959); and by Negt (2016) using the 

term to recommend an alternative exemplary education for outsiders, originally for workers, but 

today also applicable for migrants. 

As to the importance of sociological imagination, Bauman agrees by saying that sociological 

thinking ‘renders flexible again the world hitherto oppressive in its apparent fixity; it shows it as a 

world which could be different from what it is now’ (p. 16). A wish to uncover unnoticed 

alternatives motivates a ‘difference-research’ (Tarp, 2017) asking two questions: ‘Can this be 

different – and will the difference make a difference?’ If things work there is no need to ask for 

differences. But with problems, difference-research might provide a difference making a difference. 

Natural sciences use difference-research to keep on searching until finding what cannot be different. 

Describing matter in space and time by weight, length and time intervals, they all seem to vary. 

However, including per-numbers will uncover physical constants as the speed of light, the 

gravitational constant, etc. The formulas of physics are supposed to predict nature’s behavior. They 

cannot be proved as can mathematical formulas, instead they are tested as to falsifiability: Does 

nature behave different from predicted by the formula? If not, the formula stays valid until falsified. 
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Social sciences also use difference-research beginning with the ancient Greek controversy between 

two attitudes towards knowledge, called ‘sophy’ in Greek. To avoid hidden patronization, the 

sophists warned: Know the difference between nature and choice to uncover choice presented as 

nature. To their counterpart, the philosophers, choice was an illusion since the physical was but 

examples of metaphysical forms only visible to them, educated at the Plato academy. The Christian 

church transformed the academies into monasteries but kept the idea of a metaphysical 

patronization by replacing the forms with a Lord deciding world behavior. 

Today’s democracies implement common social goals through institutions with means decided by 

parliaments. As to rationality as the base for social organizations, Bauman says: 

Max Weber, one of the founders of sociology, saw the proliferation of organizations in 

contemporary society as a sign of the continuous rationalization of social life. Rational action 

(..) is one in which the end to be achieved is clearly spelled out, and the actors concentrate their 

thoughts and efforts on selecting such means to the end as promise to be most effective and 

economical. (..) the ideal model of action subjected to rationality as the supreme criterion 

contains an inherent danger of another deviation from that purpose - the danger of so-called goal 

displacement. (..) The survival of the organization, however useless it may have become in the 

light of its original end, becomes the purpose in its own right. (Bauman, 1990, pp. 79, 84) 

As an institution, mathematics education is a public organization with a ‘rational action in which 

the end to be achieved is clearly spelled out’, apparently aiming at educating students in 

mathematics, ‘The goal of mathematics education is to teach mathematics’. However, by its self-

reference such a goal is meaningless, indicating a goal displacement. So, if mathematics isn’t the 

goal in mathematics education, what is? And, how well defined is mathematics after all? 

In ancient Greece, the Pythagoreans chose the word mathematics, meaning knowledge in Greek, as 

a common label for their four knowledge areas: arithmetic, geometry, music and astronomy 

(Freudenthal, 1973), seen by the Greeks as knowledge about Many by itself, Many in space, Many 

in time and Many in space and time. And together forming the ‘quadrivium’ recommended by Plato 

as a general curriculum together with ‘trivium’ consisting of grammar, logic and rhetoric. 

With astronomy and music as independent knowledge areas, today mathematics is a common label 

for the two remaining activities, geometry and algebra, both rooted in the physical fact Many 

through their original meanings, ‘to measure earth’ in Greek and ‘to reunite’ in Arabic. And in 

Europe, Germanic countries taught counting and reckoning in primary school and arithmetic and 

geometry in the lower secondary school until about 50 years ago when they all were replaced by the 

‘New Mathematics’. 

Here the invention of the concept SET created a Set-based ‘meta-matics’ as a collection of ‘well-

proven’ statements about ‘well-defined’ concepts. However, ‘well-defined’ meant defining by self-

reference, i.e. defining top-down as examples of abstractions instead of bottom-up as abstractions 

from examples. And by looking at the set of sets not belonging to itself, Russell showed that self-

reference leads to the classical liar paradox ‘this sentence is false’ being false if true and true if 

false: If M = A│AA) then MM  MM.  

The Zermelo–Fraenkel Set-theory avoids self-reference by not distinguishing between sets and 

elements, thus becoming meaningless by not separating concrete examples from abstract concepts. 
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In this way, SET transformed grounded mathematics into today’s self-referring ‘meta-matism’, a 

mixture of meta-matics and ‘mathe-matism’ true inside but seldom outside classrooms where 

adding numbers without units as ‘1 + 2 IS 3’ meet counter-examples as e.g. 1 week + 2 days is 9 

days.  

So, mathematics has meant many different things during its more than 5000 years of history. But in 

the end, isn’t mathematics just a name for knowledge about shapes and numbers and operations? 

We all teach 3*8 = 24, isn’t that mathematics? 

The problem is two-fold. We silence that 3*8 is 3 8s, or 2.6 9s, or 2.4 tens depending on what 

bundle-size we choose when counting. Also we silence that, which is 3*8, the total. By silencing 

the subject of the sentence ‘The total is 3 8s’ we treat the predicate, 3 8s, as if it was the subject, 

which is a clear indication of a goal displacement. 

So, the goal of mathematics education is to learn, not mathematics, but to deal with totals, or, in 

other words, to master Many. The means are numbers, operations and calculations. However, 

numbers come in different forms. Buildings often carry roman numbers; and on cars, number-plates 

carry Arabic numbers in two versions, an Eastern and a Western. And, being sloppy by leaving out 

the unit and misplacing the decimal point when writing 24 instead of 2.4 tens, might speed up 

writing but might also slow down learning, together with insisting that addition precedes 

subtraction and multiplication and division if the opposite order is more natural. Finally, in Lincolns 

Gettysburg address, ‘Four scores and ten years ago’ shows that not all count in tens. 

To get an answer to the questions ‘What is mathematics?’ and ‘How is mathematics education 

improved?’ we might include philosophy in the form of what Bauman calls ‘the second Copernican 

revolution’ of Heidegger asking the question: What is ‘is’? (Bauman, 1992, p. ix).  

Inquiry is a cognizant seeking for an entity both with regard to the fact that it is and with regard 

to its Being as it is. (Heidegger, 1962, p. 5) 

Heidegger here describes two uses of ‘is’. One claims existence, ‘M is’, one claims ‘how M is’ to 

others, since what exists is perceived by humans wording it by naming it and by characterizing or 

analogizing it to create ‘M is N’-statements.  

Thus, there are four different uses of the word ‘is’. ‘Is’ can claim a mere existence of M, ‘M is’; and 

‘is’ can assign predicates to M, ‘M is N’, but this can be done in three different ways. ‘Is’ can point 

down as a ‘naming-is’ (‘M is for example N or P or Q or …’) defining M as a common name for its 

volume of more concrete examples. ‘Is’ can point up as a ‘judging-is’ (‘M is an example of N’) 

defining M as member of a more abstract category N. Finally, ‘is’ can point over as an 

‘analogizing-is’ (‘M is like N’) portraying M by a metaphor carrying over known characteristics 

from another N. 

Heidegger sees three of our seven basic is-statements as describing the core of Being: ‘I am’ and ‘it 

is’ and ‘they are’; or, I exist in a world together with It and with They, with Things and with Others. 

To have real existence, the ‘I’ (Dasein) must create an authentic relationship to the ‘It’. However, 

this is made difficult by the ‘dictatorship’ of the ‘They’, shutting the ‘It’ up in a predicate-prison of 

idle talk, gossip. 
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This Being-with-one-another dissolves one’s own Dasein completely into the kind of Being of 

‘the Others’, in such a way, indeed, that the Others, as distinguishable and explicit, vanish more 

and more. In this inconspicuousness and unascertainability, the real dictatorship of the “they” is 

unfolded. (..) Discourse, which belongs to the essential state of Dasein’s Being and has a share in 

constituting Dasein’s disclosedness, has the possibility of becoming idle talk. And when it does 

so, it serves not so much to keep Being-in-the-world open for us in an articulated understanding, 

as rather to close it off, and cover up the entities within-the-world. (Heidegger, 1962, pp. 126, 

169) 

In France, Heidegger inspired the poststructuralist thinking of Derrida, Lyotard, Foucault and 

Bourdieu, pointing out that society forces words upon you to diagnose you so it can offer cures 

including one you cannot refuse, education, that forces words upon the things around you, thus 

forcing you into an unauthentic relationship to yourself and your world (Lyotard, 1984. Bourdieu, 

1970. Chomsky et al, 2006). 

From a Heidegger view a sentence contains two things: a subject that exists, and the rest that might 

be gossip. So, to discover its true nature hidden by the gossip of traditional mathematics, we need to 

meet the subject, the total, outside its predicate-prison. We need to allow Many to open itself for us, 

so that, as curriculum architects, sociological imagination may allow us to construct a core 

mathematics curriculum based upon exemplary situations of Many in a STEM context, seen as 

having a positive effect on learners with a non-standard background (Han et al, 2014), aiming at 

providing a background as pre-teachers or pre-engineers for young migrants wanting to help 

rebuilding their original countries. 

So, to restore its authenticity, we now return to the original Greek meaning of mathematics as 

knowledge about Many by itself and in time and space; and use Grounded Theory (Glaser et al, 

1967), lifting Piagetian knowledge acquisition (Piaget, 1969) from a personal to a social level, to 

allow Many create its own categories and properties. 

Meeting Many 

As mammals, humans are equipped with two brains, one for routines and one for feelings. Standing 

up, we developed a third brain to keep the balance and to store sounds assigned to what we grasped 

with our forelegs, now freed to provide the holes in our head with our two basic needs, food for the 

body and information for the brain. The sounds developed into two languages, a word-language and 

a number-language.  

The word-language assigns words to things through sentences with a subject and a verb and an 

object or predicate, ‘This is a chair’. Observing the existence of many chairs, we ask ‘how many in 

total?’ and use the number-language to assign numbers to like things. Again, we use sentences with 

a subject and a verb and an object or predicate, ‘the total is 3 chairs’ or, if counting legs, ‘the total is 

3 fours’, abbreviated to ‘T = 3 4s’ or ‘T = 3*4’. 

Both languages have a meta-language, a grammar, describing the language, describing the world. 

Thus, the sentence ‘this is a chair’ leads to a meta-sentence ‘’is’ is a verb’. Likewise, the sentence 

‘T = 3*4’ leads to a meta-sentence ‘’*’ is an operation’. And since the meta-language speaks about 

the language, the language should be taught and learned before the meta-language. Which is the 

case with the word-language, but not with the number-language.  
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With 2017 as the 500year anniversary for Luther’s 95 theses, we can choose to describe meeting 

Many in theses. 

01. Using a folding ruler, we discover that digits are, not symbols as the alphabet, but sloppy 

writings of icons having in them as many sticks as they represent. Thus, there are four sticks in the 

four icon, and five sticks in the five icon, etc. Counting in 5s, the counting sequence is 1, 2, 3, 4, 

Bundle, 1-bundle-1, etc. This shows, that the bundle-number does not need an icon. Likewise, when 

bundling in tens. Instead of ten-1 and ten-2 we use the Viking numbers eleven and twelve meaning 

1 left and 2 left in Danish.  

      I         II            III          IIII         IIIII         IIIIII       IIIIIII       IIIIIIII     IIIIIIIII 

                                                                                                                          1          2             3              4             5              6             7              8              9 

02. Transforming four ones to a bundle of 1 4s allows counting with bundles as a unit. Using a cup 

for the bundles, a total can be ‘bundle-counted’ in three ways: the normal way or with an overload 

or with an underload. Thus, a total of 5 can be counted in 2s as 2 bundles inside the bundle-cup and 

1 unbundled single outside, or as 1 inside and 3 outside, or as 3 inside and ‘less 1’ outside; or, if 

using ‘bundle-writing’ to report bundle-counting, T = 5 = 2B1 2s = 1B3 2s = 3B-1 2s. Likewise, 

when counting in tens, T = 37 = 3B7 tens = 2B17 tens = 4B-3 tens. Using a decimal point instead of 

a bracket to separate the inside bundles from the outside unbundled singles, we discover that a 

natural number is a decimal number with a unit: T = 3B1 2s = 3.1 2s. Next, we discover that also 

bundles can be bundled, calling for an extra cup for the bundles of bundles: T = 7 = 3B1 2s = 

1BB1B1 2s. Or, with tens: T = 234 = 23B4 = 2BB3B4. 

03. Recounting in the same unit by creating or removing overloads or underloads, bundle-writing 

offers an alternative way to perform and write down operations. 

T = 65 + 27 = 6B5 + 2B7 = 8B12 = 9B2 = 92  

T = 65 – 27 = 6B5 – 2B7 = 4B-2 = 3B8 = 38  

T = 7* 48 = 7* 4B8 = 28B56 = 33B6 = 336  

T = 7* 48 = 7* 5B-2 = 35B-14 = 33B6 = 336 

T = 336 /7 = 33B6  /7 = 28B56  /7 = 4B8 = 48 

T = 338 /7 = 33B8  /7 = 28B58  /7 = 4B8 + 2/7= 48 2/7 

04. Asking a calculator to predict a counting result, we discover that also operations are icons 

showing the three tasks involved when counting by bundling and stacking. Thus, to count 7 in 3s 

we take away 3 many times iconized by an uphill stoke showing the broom wiping away the 3s. 

With 7/3 = 2.some, the calculator predicts that 3 can be taken away 2 times. To stack the 2 3s we 

use multiplication, iconizing a lift, 2x3 or 2*3. To look for unbundled singles, we drag away the 

stack of 2 3s iconized by a horizontal trace: 7 – 2*3 = 1. Thus, by bundling and dragging away the 

stack, the calculator predicts that 7 = 2B1 3s = 2.1 3s. This prediction holds at a manual counting: I 

I I I I I I = III  III  I. Geometrically, placing the unbundled single next-to the stack of 2 3s makes it 

0.1 3s, whereas counting it in 3s by placing it on-top of the stack makes it 1/3 3s, so 1/3 3s = 0.1 3s. 

Likewise when counting in tens, 1/ten tens = 0.1 tens. Using LEGO bricks to illustrate T = 3 4s, we 
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discover that a block-number contains two numbers, a bundle-number 4 and a counting-number 3. 

As positive integers, bundle-numbers can be added and multiplied freely, but they can only be 

subtracted or divided if the result is a positive integer. As arbitrary decimal-numbers, counting-

numbers have no restrictions as to operations. Only, to add counting-numbers, their bundle-number 

must be the same since it is the unit, T = 3*4 = 3 4s.  

05. Wanting to describe the three parts of a counting process, bundling and stacking and dragging 

away the stack, with unspecified numbers, we discover two formulas. The ‘recount formula’ T = 

(T/B)*B says that ‘from T, T/B times B can be taken away’ as e.g. 8 = (8/2)*2 = 4*2 = 4 2s; and the 

‘restack formula’ T = (T–B)+B says that from T, T–B is left when B is taken away and placed next-

to, as e.g. 8 = (8–2)+2 = 6+2. Here we discover the nature of formulas: formulas predict. The 

recount or proportionality formula turns out to a very basic formula. It turns up in proportionality as 

$ = ($/kg)*kg when shifting physical units, in trigonometry as a = (a/c)*c = sinA*c when counting 

sides in diagonals in right-angled triangles, and in calculus as dy = (dy/dx)*dx = y’*dx when 

counting steepness on a curve. 

06. Wanting to recount a total in a new unit, we discover that a calculator can predict the result 

when bundling and stacking and dragging away the stack. Thus, asking T = 4 5s = ? 6s, the 

calculator predicts: First (4*5)/6 = 3.some; then (4*5) – (3*6) = 2; and finally T = 4 5s = 3.2 6s. 

Also we discover that changing units is officially called proportionality or linearity, a core part of 

traditional mathematics in middle school and at the first year of university. 

07. Wanting to recount a total in tens, we discover that a calculator predicts the result directly by 

multiplication, only leaving out the unit and misplacing the decimal point. Thus, asking T = 3 7s = ? 

tens, the calculator predicts: T = 21 = 2.1 tens. Geometrically it makes sense that increasing the 

width of the stack from 7 to ten means decreasing its height from 3 to 2.1 to keep the total 

unchanged. With 5 as half of ten, and 8 as ten less 2, a 10x10 multiplication table can be reduced to 

a 3x3 table including the numbers 2, 3 and 4. Thus, 4*8 = 4*(ten less 2) = 4ten less 8 = 32; 5*8 = 

half of 8ten = 4ten = 40; 7*8 = (ten less 3)*(ten less 2) = tenten, less 3ten, less 2ten, plus 6 = 56. 

Wanting to recount a total from tens to icons, we discover this as another example of recounting to 

change the unit. Thus, asking T = 3 tens = ? 7s, the calculator predicts: First 30/7 = 4.some; then 30 

– (4*7) = 2; and finally T = 30 = 4.2 7s. Geometrically it again makes sense that decreasing the 

width means increasing the height to keep the total unchanged. 

08. Using the letter u for an unknown number, we can rewrite the recounting question ‘? 7s = 3tens’ 

as ‘u*7 = 30’ with the answer 30/7 = u since 30 = (30/7)*7, officially called to solve an equation. 

Here we discover a natural way to do so: Move a number to the opposite side with the opposite 

calculation sign. Thus, the equation 8 = u + 2 describes restacking 8 by removing 2 to be placed 

next-to, predicted by the restack-formula as 8 = (8–2)+2. So, the equation 8 = u + 2 has the solution 

is 8–2 = u, obtained again by moving a number to the opposite side with the opposite calculation 

sign. 

09. Once counted, totals can be added, but addition is ambiguous. Thus, with two totals T1 = 2 3s 

and T2 = 4 5s, should they be added on-top or next-to each other? To add on-top they must be 

recounted to have the same unit, e.g. as T1 + T2 = 2 3s + 4 5s = 1.1 5s + 4 5s = 5.1 5s, thus using 

proportionality. To add next-to, the united total must be recounted in 8s: T1 + T2 = 2 3s + 4 5s = 
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(2*3 + 4*5)/8 * 8 = 3.2 8s. So next-to addition geometrically means adding areas, and algebraically 

it means combining multiplication and addition. Officially, this is called integration, a core part of 

traditional mathematics in high school and at the first year of university. 

10. Also we discover that addition and other operations can be reversed. Thus, in reversed addition, 

8 = u+2, we ask: what is the number u that added to 2 gives 8, which is precisely the formal 

definition of u = 8–2. And in reversed multiplication, 8 = u*2, we ask: what is the number u that 

multiplied with 2 gives 8, which is precisely the formal definition of u = 8/2. Also we see that the 

equations u^3 = 20 and 3^u = 20 are the basis for defining the reverse operations root, the factor-

finder, and logarithm, the factor-counter, as u = 3√20 and u = log3(20). Again we solve the 

equation by moving to the opposite side with the opposite calculation sign. Reversing next-to 

addition we ask 2 3s + ? 5s = 3 8s or T1 + ? 5s = T. To get the answer u, from the terminal total T 

we remove the initial total T1 before we count the rest in 5s: u = (T–T1)/5 = T/5, using  for the 

difference or change. Letting subtraction precede division is called differentiation, the reverse 

operation to integration letting multiplication precede addition. 

11. Observing that many physical quantities are ‘double-counted’ in two different units, kg and 

dollar, dollar and hour, meter and second, etc., we discover the existence of ‘per-numbers’ serving 

as a bridge between the two units. Thus, with a bag of apples double-counted as 4$ and 5kg we get 

the per-number 4$/5kg or 4/5 $/kg. As to 20 kg, we just recount 20 in 5s and get T = 20kg = 

(20/5)*5kg = (20/5)*4$ = 16$. As to 60$, we just recount 60 in 4s and get T = 60$ = (60/4)*4$ = 

(60/4)*5kg = 75kg.  

12. Economy is based upon investing money and expecting a return that might be higher or lower 

than the investment, e.g. 7$ per 5$ or 3$ per 5$. Here when double-counting in the same unit, per-

numbers become fractions, 3 per 5 = 3/5, or percentages as 3 per hundred = 3/100 = 3%. Thus, to 

find 3 per 5 of 20, or 3/5 of 20, as before we just recount 20 in 5s and replace 5 with 3, T = 20 = 

(20/5)*5 giving (20/5)*3 = 12. 

To find what 3 per 5 is per hundred, 3/5 = ?%, we just recount 100 in 5s and replace 5 with 3: T = 

100 = (100/5)*5 giving (100/5)*3 = 60. So 3 per 5 is the same as 60 per 100, or 3/5 = 60%. Also we 

observe that per-numbers and fractions are not numbers, but operators needing a number to become 

a number. Adding 3kg at 4$/kg and 5kg at 6$/kg, the unit-numbers 3 and 5 add directly, but the per-

numbers 4 and 6 add by their areas 3*4 and 5*6 giving the total 8 kg at (3*4+5*6)/8 $/kg. Likewise 

when adding fractions. Adding by areas means that adding per-numbers and adding fractions 

become integration as when adding block-numbers next-to each other. So calculus appears at all 

school levels: at primary, at lower and at upper secondary and at tertiary level. 

13. Halved by its diagonal, a rectangle splits into two right-angled triangles. Here the angles are 

labeled A and B and C at the right angle. The opposite sides are labeled a and b and c. 

The height a and the base b can be counted in meters, or in diagonals c creating a sine-formula and 

a cosine-formula: a = (a/c)*c = sinA*c, and b = (b/c)*c = cosA*c. Likewise, the height can be 

recounted in bases, creating a tangent-formula: a = (a/b)*b = tanA*b 

As to the angles, with a full turn as 360 degrees, the angle between the horizontal and vertical 

directions is 90 degrees. Consequently, the angles between the diagonal and the vertical and 

horizontal direction add up to 90 degrees; and the three angles add up to 180 degrees. 
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An angle A can be counted by a protractor, or found by a formula. Thus, in a right-angled triangle 

with base 4 and diagonal 5, the angle A is found from the formula cosA = a/c = 4/5 as cos-1(4/5) = 

36.9 degrees.  

The three sides have outside squares with areas a^2 and b^2 and c^2. Turning a right triangle so that 

the diagonal is horizontal, a vertical line from the angle C split the square c^2 into two rectangles. 

The rectangle under the angle A has the area (b*cosA)*c = b*(cosA*c) = b*b = b^2. Likewise, the 

rectangle under the angle B has the area (a*cosB)*c = a*(cosB*c) = a*a = a^2. Consequently c^2 = 

a^2 + b^2, called the Pythagoras formula. 

 This allows finding a square-root geometrically, e.g. x = √24, solving the quadratic equations x^2 = 

24 = 4*6, if transformed into a rectangle. On a protractor, the diameter 9.5 cm becomes the base 

AB, so we have 6units per 9.5cm. Recounting 4 in 6s, we get 4units = (4/6)*6units = (4/6)*9.5 cm = 

6.33 cm. A vertical line from this point D intersects the protractor’s half-circle in the point C. Now, 

with a 4x6 rectangle under BD, BC will be the square-root √24, measured to 4.9, which checks: 

4.9^2 = 24.0. 

A triangle that is not right-angled transforms into a rectangle by outside right-angled triangles, thus 

allowing its sides and angles and area to be found indirectly. So, as in right-angled triangles, any 

triangle has the property that the angles add up to 180 degrees and that the area is half of the height 

times the base. 

Inside a circle with radius 1, the two diagonals of a 4sided square together with the horizontal and 

vertical diameters through the center form angles of 180/4 degrees. Thus the circumference of the 

square is 2*(4*sin(180/4)), or 2*(8*sin(180/8)) with 8 sides instead. Consequently, the 

circumference of a circle with radius 1 is 2*, where  = n*sin(180/n) for n large. 

14. A coordinate system coordinates algebra with geometry where a point is reached by a number of 

horizontally and vertically steps called the point’s x- and y-coordinates. 

Two points A(xo,yo) and B(x,y) with different x- and y-numbers will form a right-angled change-

triangle with a horizontal side x = x-xo and a vertical side y = y-yo and a diagonal distance r 

from A to B, where by Pythagoras r^2 = x^2 + y^2. The angle A is found by the formula tanA = 

y/x = s, called the slope or gradient for the line from A to B. This gives a formula for a non-

vertical line: y/x = s or y = s*x, or y-yo = s*(x-xo). Vertical lines have the formula x = xo 

since all points share the same x-number.  

In a coordinate system three points A(x1,y1) and B(x2,y2)and C(x3,y3) not on a line will form a 

triangle that packs into a rectangle by outside right-angled triangles allowing indirectly to find the 

angles and the sides and the area of the original triangle.  

Different lines exist inside a triangle: Three altitudes measure the height of the triangle depending 

on which side is chosen as the base; three medians connect an angle with the middle of the opposite 

side; three angle bisectors bisect the angles; three line bisectors bisect the sides and are turned 90 

degrees from the side. Likewise, a triangle has two circles; an outside circle with its center at the 

intersection point of the line bisectors, and an inside circle with its center at the intersection point of 

the angle bisectors. 
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Since x and y changes place when turning a line 90 degrees, their slopes will be y/x and -

x/y respectively, so that s1*s2 = -1, called reciprocal with opposite sign. 

Geometrical intersection points are predicted algebraically by solving two equations with two 

unknowns, i.e. by inserting one into the other. Thus with the lines y = 2*x and y = 6-x, inserting the 

first into the second gives 2*x = 6-x, or 3*x = 6, or x = 2, which inserted in the first gives y = 2*2 = 

4, thus predicting the intersection point to be (x,y) = (2,4). The same answer is found on a solver-

app; or using software as GeoGebra. 

Finding possible intersection points between a circle and a line or between two circles leads to a 

quadratic equation x^2 + b*x + c = 0, solved by a solver. Or by a formula created by two m-by-x 

playing cards on top of each other with the bottom left corner at the same place and the top card 

turned a quarter round clockwise. With k = m-x, this creates 4 areas combining to (x + k)^2 = x^2 + 

2*k*x + k^2. With k = b/2 this becomes (x + b/2)^2 = x^2 + b*x + (b/2)^2 + c – c = (b/2)^2 – c 

since x^2 + b*x + c = 0. Consequently the solution formula is x = -b/2 ±√((b/2)^2 – c). 

Finding a tangent to a circle at a point, its slope is the reciprocal with opposite sign of the radius 

line. 

15. A formula predicts a total before counting it. A formula typically contains both specified and 

unspecified numbers in the form of letters, e.g. T = 5+3*x. A formula containing one unspecified 

number is called an equation, e.g. 26 = 5+3*x, to be solved by moving to opposite side with 

opposite calculation sign, (26-5)/3 = x. A formula containing two unspecified numbers is called a 

function, e.g. T = 5+3*x. An unspecified function containing an unspecified number x is labelled 

f(x), T = f(x). Thus f(2) is meaningless since 2 is not an unspecified number. Functions are 

described by a table or a graph in a coordinate system with y = T = f(x), both showing the y-

numbers for different x-numbers. Thus, a change in x, x, will imply a change in y, y, creating a 

per-number y/x called the gradient. 

16. In a function y = f(x), a small change x often implies a small change in y, thus both remaining 

‘almost constant’ or ‘locally constant’, a concept formalized with an ‘epsilon-delta criterium’, 

distinguishing between three forms of constancy. y is ‘globally constant’ c if for all positive 

numbers epsilon, the difference between y and c is less than epsilon. And y is ‘piecewise constant’ c 

if an interval-width delta exists such that for all positive numbers epsilon, the difference between y 

and c is less than epsilon in this interval. Finally, y is ‘locally constant’ c if for all positive numbers 

epsilon, an interval-width delta exists such that the difference between y and c is less than epsilon in 

this interval. Likewise, the change ratio y/x can be globally, piecewise or locally constant, in the 

latter case written as dy/dx. Formally, local constancy and linearity is called continuity and 

differentiability. 

17. As to change, a total can change in a predictable or unpredictable way; and predictable change 

can be constant or non-constant. 

Constant change comes in several forms. In linear change, T = b + s*x, s is the constant change in y 

per change in x, called the slope or the gradient of its graph, a straight line. In exponential change, T 

= b*(1+r)^x, r is the constant change-percent in y per change in x, called the change rate. In power 

change, T = b*x^p, p is the constant change-percent in y per change-percent in x, called the 

elasticity. A saving increases from two sources, a constant $-amount per month, c, and a constant 
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interest rate per month, r. After n months, the saving has reached the level C predicted by the 

formula C/c = R/r. Here the total interest rate after n months, R, comes from 1+R = (1+r)^n. 

Splitting the rate r = 100% in t parts, we get the Euler number e = (1+100%/t)^t = (1+1/t)^t if t is 

large. 

Also the change can be constant changing. Thus in T = c + s*x, s might also change constantly as s 

= c + q*x so that T = b + (c + q*x)*x = b + c*x + q*x^2, called quadratic change, showing 

graphically as a line with a curvature, a parabola. 

If not constant but still predictable, we have a change formula T/x = f(x) or dT/dx = f(x) in the 

case of interval change or local change. Such an equation is called a differential equation which is 

solved by calculus, adding up all the local changes to a total change being the difference between 

the end and start number: T2-T1 =  T = ∫ dT = ∫f(x)*dx. Thus, with dT/dx = 2*x, T2-T1 = 

(x^2). Change formula come from observing that in a block, changes b and h in the base b and 

the height h impose on the total a change T as the sum of a vertical strip b*h and a horizontal 

strip b*h and a corner b*h that can be neglected for small changes; thus d(b*h) = db*h + b*dh, 

or counted in T’s: dT/T = db/b + dh/h, or with T’ = dT/dx, T’/T = b’/b + h’/h. Therefore (x^2)’/x^2 

= x’/x + x’/x = 2/x, giving (x^2)’ = 2*x since x’ = dx/dx = 1. 

18. Unpredictable change can be exemplified by throwing a dice with two results: winning, +1, if 

showing 4 or above, and losing, 0, if showing 3 or below. Throwing a dice 5 times thus have 6 

outcomes, winning from 0 to 5 times. The outcome is called an unpredictable or stochastic or 

random number or variable. Per definition, random numbers cannot be pre-dicted, instead they can 

be ‘post-dicted’ using statistics and probability. 

Thus the outcome ‘0,0,0,1,1’ can be described by three numbers. The mode is 0 since this number 

has the highest frequency, 3 per 5, or 3/5. The median is 0 since this is the middle number when 

aligned in increasing order. The mean u is the fictional number had all numbers been the same: u*5 

= 0+0+0+1+1 with the solution u = 2/5 = 0.4. With the outcome ‘0,0,1,1,1’, the mode and median 

and mean is 1 and 1 and 3/5 = 0.6. 

To find the three numbers if the experiment is repeated many times, we look at a ‘possibly tree’. 

The first toss has two results, win or lose, both occurring ½ of the times. Likewise, with the 

following tosses: After two tosses we have three outcomes: 2 wins, 1 win and 0 wins. Here 2 wins 

and 0 wins occur half of half of the times, i.e. with a probability ¼. 1 win occurs twice, as win-lose 

or as lose-win, both with a probably of ¼, so the total probability for 1 win is 2*1/4 = ½. 

Continuing in this way we find that with 5 tosses there are 6 outcomes, winning from 0 to 5 times 

with the probabilities ½^5 a certain number of times: 1, 5, 10, 10, 5, 1. By calculations we find that 

the mode is 2 and 3, and that the median and the mean is 2.5, also found by multiplying the number 

of repetitions with the probability for winning. 

A spreadsheet random generator can show examples of other outcomes. 

19. A sphere may be distorted into a cup. Even if distorted, a rectangle will still divide a sphere into 

an inside and an outside needing a bridge to be connected. And a sphere with a bridge may be 

distorted into a cup with a handle or into a donut. Distortion geometry is called topology, useful 

when setting up networks, thus able to prove that connecting three houses with water, gas and 

electricity is impossible without a bridge. 
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20. As qualitative literature, also quantitative literature has three genres, fact and fiction and 

‘fiddle’, used when modeling real world situations. Fact is ‘since-then’ calculations using numbers 

and formulas to quantify and to predict predictable quantities as e.g. ‘since the base is 4 and the 

height is 5, then the area of the rectangle is T = 4*5 = 20’. Fact models can be trusted once the 

numbers and the formulas and the calculation has been checked. Special care must be shown with 

units to avoid adding meters and inches as in the case of the failure of the 1999 Mars-orbiter. 

Fiction is ‘if-then’ calculations using numbers and formulas to quantify and to predict unpredictable 

quantities as e.g. ‘if the unit-price is 4 and we buy 5, then the total cost is T = 4*5 = 20’. Fiction 

models build upon assumptions that must be complemented with scenarios based upon alternative 

assumptions before a choice is made. Fiddle models is ‘what-then’ models using numbers and 

formulas to quantify and to predict unpredictable qualities as e.g. ‘since a graveyard is cheaper than 

a hospital, then a bridge across the highway is too costly.’ Fiddle models should be rejected and 

relegated to a qualitative description. 

Meeting Many in a STEM Context 

Having met Many by itself, now we meet Many in time and space in the present culture based upon 

STEM, described by OECD as follows: 

The New Industrial Revolution affects the workforce in several ways. Ongoing innovation in 

renewable energy, nanotech, biotechnology, and most of all in information and communication 

technology will change labour markets worldwide. Especially medium-skilled workers run the 

risk of being replaced by computers doing their job more efficiently. This trend creates two 

challenges: employees performing tasks that are easily automated need to find work with tasks 

bringing other added value. And secondly, it propels people into a global competitive job 

market. (..) In developed economies, investment in STEM disciplines (science, technology, 

engineering and mathematics) is increasingly seen as a means to boost innovation and economic 

growth. The importance of education in STEM disciplines is recognised in both the US and 

Europe. (OECD, 2015b) 

STEM thus combines basic knowledge about how humans interact with nature to survive and 

prosper: Mathematics provides formulas predicting nature’s physical and chemical behavior, and 

this knowledge, logos, allows humans to invent procedures, techne, and to engineer artificial hands 

and muscles and brains, i.e. tools, motors and computers, that combined to robots help transforming 

nature into human necessities. 

A falling ball introduces nature’s three main actors, matter and force and motion, similar to the 

three social actors, humans and will and obedience. As to matter, we observe three balls: the earth, 

the ball, and molecules in the air. Matter houses two forces, an electro-magnetic force keeping 

matter together when colliding, and gravity pumping motion in and out of matter when it moves in 

the same or in the opposite direction of the force. In the end, the ball is lying still on the ground. Is 

the motion gone? No, motion cannot disappear. Motion transfers through collisions, now present as 

increased motion in molecules; meaning that the motion has lost its order and can no longer be put 

to work. In technical terms: as to motion, its energy stays constant but its entropy increases. But, if 

the disorder increases, how is ordered life possible? Because, in the daytime the sun pumps in high-
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quality, low-disorder light-energy; and in the nighttime the space sucks out low-quality high-

disorder heat-energy; if not, global warming would be the consequence. 

Science is about nature itself. How three different Big Bangs, transforming motion into matter and 

anti-matter and vice versa, fill the universe with motion and matter interacting with forces making 

matter combine in galaxies, star systems and planets. Some planets have a size and a distance from 

its sun that allows water to exist in its three forms, solid and gas and liquid, bringing nutrition to 

green and grey cells, forming communities as plants and animals: reptiles, mammals and humans. 

Animals have a closed interior water cycle carrying nutrition to the cells and waste from the cells 

and kept circulating by the heart. Plants have an open exterior water cycle carrying nutrition to the 

cells and kept circulating by the sun forcing water to evaporate through leaves. Nitrates and carbon-

dioxide and water is waste for grey cells, but food for green cells producing proteins and carbon-

hydrates and oxygen as food for the grey cells in return. 

Technology is about satisfying human needs. First by gathering and hunting, then by using 

knowledge about matter to create tools as artificial hands making agriculture possible. Later by 

using knowledge about motion to create motors as artificial muscles, combining with tools to 

machines making industry possible. And finally using knowledge about information to create 

computers as artificial brains combining with machines to artificial humans, robots, taking over 

routine jobs making high-level welfare societies possible. 

Engineering is about constructing technology and power plants allowing electrons to supply 

machines and robots with their basic need for energy and information; and about how to build 

houses, roads, transportation means, etc. 

Mathematics is our number-language allowing us to master Many by calculation sentences, 

formulas, expressing counting and adding processes. First Many is bundle-counted in singles, 

bundles, bundles of bundles etc. to create a total T that might be recounted in the same or in a new 

unit or into or from tens; or double-counted in two units to create per-numbers and fractions. Once 

counted, totals can be added on-top if recounted in the same unit, or next-to by their areas, called 

integration, which is also how per-numbers and fractions add. Reversed addition is called solving 

equations. When totals vary, the change can be unpredictable or predictable with a change that 

might be constant or not. To master plane or spatial shapes, they are divided into right triangles seen 

as a rectangle halved by its diagonal, and where the base and the height and the diagonal can be 

recounted pairwise to create the per-numbers sine, cosine and tangent. 

So, a core STEM curriculum could be about cycling water. Heating transforms it from solid to 

liquid to gas, i.e. from ice to water to steam; and cooling does the opposite. Heating an imaginary 

box of steam makes some molecules leave, so the lighter box is pushed up by gravity until 

becoming heavy water by cooling, now pulled down by gravity as rain in mountains and through 

rivers to the sea. On its way down, a dam can transform falling water to electricity. To get to the 

dam, we must build roads along the hillside. 

In the sea, water contains salt. Meeting ice at the poles, water freezes but the salt stays in the water 

making it so heavy it is pulled down by gravity, elsewhere pushing warm water up thus creating 

cycles in the ocean pumping warm water to cold regions.  
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The two water-cycles fueled by the sun and run by gravity leads on to other STEM areas: to the 

trajectory of a ball pulled down by gravity; to an electrical circuit where electrons transport energy 

from a source to a consumer; to dissolving matter in water; and to building roads on hillsides. 

A short World History 

When humans left Africa, some went west to the European mountains, some went east where the 

fertile valleys in India supplied everything except for silver from the mountains. Consequently, rich 

trade took place sending pepper and silk west and silver east. European culture flourished around 

the silver mines, first in Greece then in Spain during the Roman Empire. Then the Vandal conquest 

of the mines brought the dark middle age to Europe until silver was found in the Harz valley (Tal in 

German leading to thaler and dollar), transported through Germany to Italy. Here silver financed the 

Italian Renaissance, going bankrupt when Portugal discovered a sea route to India enabling them to 

skip the cost of Arab middlemen. Spain looked for a sea route going west and found the West 

Indies. Here there was neither pepper nor silk but silver in abundance e.g. in the land of silver, 

Argentine. On their way home, slow Spanish ships were robbed by sailing experts, the Vikings 

descendants living in England, now forced to take the open sea to India to avoid the Portuguese 

fortification of Africa’s coast.  

In India, the English found cotton that they brought to their colonies in North America, but needing 

labor they started a triangle-trade exchanging US cotton for English weapon for African slaves for 

US cotton. In the agricultural South, a worker was a cost to be minimized, but in the industrial 

North a worker was a consumer needed at an industrial market. During the civil war, no cotton 

came to England that then conquered Africa to bring the plantations to the workers instead. 

Dividing the world in closed economies kept new industrial states out of the world market that it 

took two world wars to open for free competition. 

Nature Obeys Laws, but from Above or from Below? 

In the Lord’s Prayer, the Christian Church says: ‘Thy will be done, on earth as it is in heaven’. 

Newton had a different opinion. 

As experts in sailing, the Viking descendants in England had no problem stealing Spanish silver on 

its way across the Atlantic Ocean. But to get to India to exchange it for pepper and silk, the 

Portuguese fortification of Africa’s cost forced them to take the open sea and navigate by the moon. 

But how does the moon move? The church had one opinion, Newton meant differently. 

 ‘We believe, as is obvious for all, that the moon moves among the stars,’ said the Church, opposed 

by Newton saying: ‘No, I can prove that the moon falls to the earth as does the apple.’ ‘We believe 

that when moving, things follow the unpredictable metaphysical will of the Lord above whose will 

is done, on earth as it is in heaven,’ said the Church, opposed by Newton saying: ‘No, I can prove 

they follow their own physical will, a physical force, that is predictable because it follows a 

mathematical formula.’ ‘We believe, as Aristotle told us, that a force upholds a state,’ said the 

Church, opposed by Newton saying: ‘No, I can prove that a force changes a state. Multiplied with 

the time applied, the force’s impulse changes the motion’s momentum; and multiplied with the 

distance applied, the force’s work changes the motion’s energy.’ ‘We believe, as the Arabs have 

shown us, that to deal with formulas you just need ordinary algebra,’ said the Church, opposed by 

Newton saying: ‘No. I need to develop a new algebra of change which I will call calculus.’ 



14 

 

Proving that nature obeys its own will and not that of a patronizor, Newton inspired the 

Enlightenment century realizing that if enlightened we don’t need the double patronization of the 

physical Lord at the Manor house and the metaphysical Lord above. Citizens only need to inform 

themselves, debate and vote. Consequently, to enlighten the population, two Enlightenment 

republics were created, in the US in 1776 and in France in 1789. The US still have their first 

republic allowing its youth to uncover and develop their personal talent through daily lessons in 

self-chosen half-year blocks, whereas the Napoleon wars forced France and the rest of continental 

Europe to copy the Prussians line-organized education forcing teenagers to follow their year-group 

and its schedule, creating a knowledge nobility (Bourdieu, 1970) for public offices, and unskilled 

workers, good for yesterday’s industrial society, but bad for today’s information society where a 

birth rate at 1.5 child per family will halve the population each 50 years since (1.5/2)^2 = 0.5 

approximately. 

Counting and DoubleCounting Time, Space, Matter, Force and Energy 

Counting time, the unit is seconds. A bundle of 60seconds is called a minute; a bundle of 60minutes 

is called an hour, and a bundle of 24hours is called a day, of which a bundle of 7 is called a week. A 

year contains 365 or 366days, and a month from 28 to 31days. 

Counting space, the international unit is meter, of which a bundle of 1000 is called a kilometer; and 

if split becomes a bundle of 1000millimeters, 100centimeters and 10decimeters. Counting squares, 

the unit is 1 square-meter. Counting cubes, the unit is 1cubic-meter, that is a bundle of 1000cubic-

decimeters, also called liters, that split up as a bundle of 1000milliliters. 

Counting matter, the international unit is gram that splits up into a bundle of 1000milligrams and 

that unites in a bundle of 1000 to 1 kilogram, of which a bundle of 1000 is called 1tons. 

Counting force and energy, a force of 9.8Newton will lift 1 kilogram, that will release an energy of 

9.8Joule when falling 1meter. 

Cutting up a stick in unequal lengths allows the pieces to be double-counted in liters and in 

kilograms giving a per-number around 0.7kg/liter, also called the density.  

A walk can be double-counted in meters and seconds giving a per-number at e.g. 3meter/second, 

called the speed. When running, the speed might be around 10meter/second. Since an hour is a 

bundle of 60 bundles of 60seconds this would be 60*60meters per hour or 3.6 kilometers per hour, 

or 3.6km/h. 

A pressure from a force applied to a surface can be double-counted in Newton and in square meters 

giving a per-number Newton per square-meter, also called Pascal. 

Motion can be double-counted in Joules and seconds producing the per-number Joule/second called 

Watt. To run properly, a bulb needs 60Watt, a human needs 110Watt, and a kettle needs 2000Watt, 

or 2kiloWatt. From the Sun the Earth receives 1370Watt per square meter. 

Warming and Boiling water 

In a water kettle, a double-counting can take place between the time elapsed and the energy used to 

warm the water to boiling, and to transform the water to steam. 
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Heating 1000gram water 80degrees in 167seconds in a 2000Watt kettle, the per-number will be 

2000*167/80Joule/degree, creating a double per-number 2000*167/80/ 1000Joule/degree/gram or 

4.18Joule/degree/gram, called the specific heat of water. 

Producing 100gram steam in 113seconds, the per-number is 2000*113/100Joule/gram or 2260J/g, 

called the heat of evaporation for water. 

Letting Steam Work 

A water molecule contains two Hydrogen and one Oxygen atom weighing 2*1+16 units. A 

collection of a million billion billion molecules is called a mole; a mole of water weighs 18 gram. 

Since the density of water is roughly 1000gram/liter, the volume of 1000moles is 18liters. 

Transformed into steam, its volume increases to more than 22.4*1000liters, or an increase factor of 

22,400liters per 18liters = 1244 times. The volume should increase accordingly. But, if kept 

constant, instead the inside pressure will increase.  

Inside a cylinder, the ideal gas law, p*V = n*R*T, combines the pressure, p, and the volume, V, 

with the number of moles, n, and the absolute temperature, T, which adds 273degrees to the Celsius 

temperature. R is a constant depending on the units used. The formula expresses different 

proportionalities: The pressure is direct proportional with the number of moles and the absolute 

temperature so that doubling one means doubling the other also; and inverse proportional with the 

volume, so that doubling one means halving the other.  

So, with a piston at the top of a cylinder with water, evaporation will make the piston move up, and 

vice versa down if steam is condensed back into water. This is used in steam engines. In the first 

generation, water in a cylinder was heated and cooled by turn. In the next generation, a closed 

cylinder had two holes on each side of an interior moving piston thus decreasing and increasing the 

pressure by letting steam in and out of the two holes. The leaving steam the is visible on steam 

locomotives. In the third generation used in power plants, two cylinders, a hot and a cold, connect 

with two tubes allowing water to circulate inside the cylinders. In the hot cylinder, heating increases 

the pressure by increasing both the temperature and the number of steam moles; and vice versa in 

the cold cylinder where cooling decreases the pressure by decreasing both the temperature and the 

number of steam moles condensed to water, pumped back to the hot cylinder in one of the tubes. In 

the other tube, the pressure difference makes blowing steam rotate a mill that rotates a magnet over 

a wire, which makes electrons move and carry electrical power to industries and homes. 

An Electrical circuit 

To work properly, a 2000Watt water kettle needs 2000Joule per second. The socket delivers 220 

Volts, a per-number double-counting the number of Joules per charge-unit. 

Recounting 2000 in 220 gives (2000/220)*220 = 9.1*220, so we need 9.1 charge-units per second, 

which is called the electrical current counted in Ampere. 

To create this current, the kettle must have a resistance R according to a circuit law Volt = 

Resistance*Ampere, i.e., 220 = R*9.1, or Resistance = 24.2Volt/Ampere called Ohm.  

Since Watt = Joule per second = (Joule per charge-unit)*(charge-unit per second) we also have a 

second formula Watt = Volt*Ampere. 
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Thus, with a 60Watt and a 120Watt bulb, the latter needs twice the current, and consequently half 

the resistance of the former. 

Supplied next-to each other from the same source, the combined resistance R must be decreased as 

shown by reciprocal addition, 1/R = 1/R1 + 1/R2. But supplied after each other, the resistances add 

directly, R = R1 + R2. Since the current is the same, the Watt-consumption is proportional to the 

Volt-delivery, again proportional to the resistance. So, the 120Watt bulb only receives half of the 

energy of the 60Watt bulb. 

How high up and how far out 

A ping-pong ball is sent upwards. This allows a double-counting between the distance and the time 

to the top, 5meters and 1second. The gravity decreases the speed when going up and increases it 

when going down, called the acceleration, a per-number counting the change in speed per second.  

To find its initial speed we turn the gun 45degrees and count the number of vertical and horizontal 

meters to the top as well as the number of seconds it takes, 2.5meters and 5meters and 0,71 seconds. 

From a folding ruler we see, that now the speed is split into a vertical and a horizontal part, both 

reducing it with the same factor sin45 = cos45 = 0,707. 

The vertical speed decreases to zero, but the horizontal speed stays constant. So we can find the 

initial speed by the formula: Horizontal distance to the top = horizontal speed * time, or with 

numbers: 5 = (u*0,707)*0,71, solved as u = 9.92meter/seconds by moving to the opposite side with 

opposite calculation sign, or by a solver-app. 

The vertical distance is halved, but the vertical speed changes from 9.92 to 9.92*0.707 = 7.01 only. 

However, the speed squared is halved from 9.92*9.92 = 98.4 to 7.01*7.01 = 49.2.  

So horizontally, there is a proportionality between the distance and the speed. Whereas vertically, 

there is a proportionality between the distance and the speed squared, so that doubling the vertical 

speed will increase the distance four times. 

How many turns on a steep hill 

On a 30degree hillside, a 10degree road is constructed. How many turns will there be on a 1 km by 

1 km hillside? 

We let A and B label the ground corners of the hillside. C labels the point where a road from A 

meets the edge for the first time, and D is vertically below C on ground level. We want to find the 

distance BC = u. 

In the triangle BCD, the angle B is 30degrees, and BD = u*cos(30). With Pythagoras we get u^2 = 

CD^2 + BD^2 = CD^2 + u^2*cos(30)^2, or CD^2 = u^2(1-cos(30)^2) = u^2*sin(30)^2. 

In the triangle ACD, the angle A is 10degrees, and AD = AC*cos(10). With Pythagoras we get 

AC^2 = CD^2 + AD^2 = CD^2 + AC^2*cos(10)^2, or CD^2 = AC^2(1-cos(10)^2) = 

AC^2*sin(10)^2. 

In the triangle ACB, AB = 1 and BC = u, so with Pythagoras we get AC^2 = 1^2 + u^2, or AC = 

√(1+u^2). 
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Consequently, u^2*sin(30)^2 = AC^2*sin(10)^2, or u = AC*sin(10)/sin(30) = AC*r, or u = 

√(1+u^2)*r, or u^2 = (1+u^2)*r^2, or u^2*(1-r^2) = r^2, or u^2 = r^2/(1-r^2) = 0.137, giving the 

distance BC = u = √0.137 = 0.37.  

Thus, there will be 2 turns: 370meter and 740meter up the hillside. 

Dissolving material in water 

In the sea, salt is dissolved in water. The tradition describes the solution as the number of moles per 

liter. A mole of salt weighs 59gram, so recounting 100gram salt in moles we get 100gram = 

(100/59)*59gram = (100/59)*1mole = 1.69mole, that dissolved in 2.5liter has a strength as 

1.69moles per 2.5liters or 1.69/2.5 moles/liters, or 0.676moles/liter. 

The Simplicity of Mathematics 

Meeting Many, we ask ‘How many in total?’ To answer, we count and add. To count means to use 

division, multiplication and subtraction to predict unit-numbers as blocks of stacked bundles, but 

also to recount to change unit, and to double-count to get per-numbers bridging the units, both 

rooting proportionality.  

Adding thus means uniting unit-numbers and per-numbers, but both can be constant or variable, so 

to predict, we need four uniting operations: addition and multiplication unite variable and constant 

unit-numbers; and integration and power unite variable and constant per-numbers. As well as four 

splitting operations: subtraction and division split into variable and constant unit-numbers; and 

differentiation and root/logarithm split into variable and constant per-numbers. This resonates with 

the Arabic meaning of algebra, to reunite. And it appears in Arabic numbers written out fully as T = 

456 = 4 bundles-of-bundles & 5 bundles & 6 unbundled, showing all four uniting operations, 

addition and multiplication and power and next-to addition of stacks; and showing that the word-

language and the number-language share the same sentence form with a subject and a verb and a 

predicate or object. 

Shapes can split into right-angled triangles, where the sides can be mutually recounted in three per-

numbers, sine and cosine and tangent. 

So, in principle, mathematics is simple and easy and quick to learn if institutionalized education 

wants to do so; however, to preserve and expand itself, the institution might want instead to hide the 

simplicity of mathematics by leaving out the subject and the verb in the number-language 

sentences; and by avoid counting to hide the block-nature of numbers as stacked bundles in order to 

impose linear place-value numbers instead; and by reversing the natural order of operations by 

letting addition precede subtraction, preceding multiplication, preceding division; and by hiding the 

double nature of addition by silencing next-to addition; and by silencing per-numbers and present 

fractions as numbers instead of operators needing numbers to become numbers; and by adding 

fractions without units to hide the true nature of integration as adding per-numbers by their areas; 

and by postponing trigonometry to after ordinary geometry and coordinate geometry; and by 

forcing equations to be solved by obeying the commutative and associative laws of abstract algebra; 

and by hiding that a function is but another name for a number-language sentence; and by forcing 

differential calculus to precede integral calculus. 
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Discussion: How does Traditional MatheMatics differ from ManyMatics  

But in the end, how different is traditional mathematics from ManyMatics? As their base they have 

Set and Many, but isn’t that just two different words for the same? Not entirely. Many exists in the 

world, it is physical, whereas Set exists in a description, it is meta-physical. Thus, traditional 

mathematics defines its concepts top-down as examples, whereas ManyMatics defines its concepts 

bottom-up as abstractions. Still, the concepts might be the same, at least when taught? But a 

comparison uncovers several differences between the Set-derived tradition and its alternative 

grounded in Many. 

The tradition sees the goal of mathematics education as teaching numbers and shapes and 

operations. In numbers, digits are symbols like letters, ordered according to a place value system, 

seldom renaming ‘234’ to ‘2tentens 3tens 4’. There are four kinds of numbers: natural and integers 

and rational and real. The natural numbers are defined by a successor principle making them one 

dimensional placed along a number line given the name ‘cardinality’. The integers are defined as 

equivalence classes in a set of ordered number-pairs where (a,b) is equivalent to (c,d) if a+d = b+c. 

Likewise, the rational numbers are defined by (a,b) being equivalent to (c,d) if a*d = b*c. Finally, 

the real numbers are defined as limits of number sequences.  

The alternative sees the goal of mathematics education as teaching a number-language describing 

the physical fact Many by full sentences with the total as the subject, e.g. T = 2*3, thus having the 

same structure as the word-language, both having a language level describing the world, and a 

meta-language level describing the language. Digits are icons containing as many sticks as they 

represent if written less sloppy. Numbers occur when counting Many by bundling and stacking 

produces a block of bundles and unbundled, using bundle- or decimal-writing to separate the inside 

bundles from the outside unbundled. The bundle-number, typically ten, does not need an icon since 

it is counted as ‘1 bundle’. Thus, a natural number is a decimal number with a unit, illustrated 

geometrically as a row of blocks containing the unbundled, the bundles, the bundle of bundles etc. 

Counting includes recounting in the same unit to create overload or underload, as well as recounting 

in another unit, especially in and from tens. Double-counting in different units gives per-numbers 

and fractions; however, these are not numbers but operators needing a number to become a number. 

A diagonal divides a block into two like right-angled triangles where the base and the altitude can 

be recounted in diagonals or in each other. Real numbers as √2 are calculations with as many 

decimals as needed, since a single can always be seen as a bundle of parts. 

The tradition sees operations in a number set as mappings from a set-product into the set. Addition 

is the basic operation allowing number sets to be structured with an associative and a commutative 

and a distributive law as well as a neutral element and inverse elements. Addition is defined as 

repeating the successor principle, and multiplication is defined as repeated addition. Subtraction and 

division is defined as adding or multiplying inverse numbers. Standard algorithms for operations 

are introduced using carrying. Electronical calculators are not allowed when learning the four basic 

operations. The full ten-by-ten multiplication tables must be learned by heart. 

The alternative sees operations as icons describing the counting process. Here division is an uphill 

stroke showing a broom wiping away the bundles; multiplication is a cross showing a lift stacking 

the bundles into a block, to be dragged away to look for unbundled singles, shown by a horizontal 
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track called subtraction. Finally, addition is a cross showing that blocks can be juxtaposed next-to 

or on-top of each other. To add on-top, the blocks must be recounted in the same unit, thus 

grounding proportionality. Next-to addition means adding areas, thus grounding integration. 

Reversed adding on-top or next-to grounds equations and differentiation. A calculator is used to 

predict the result by two formulas, a recount-formula T = (T/B)*B, and a restack-formula T = (T-

B)+B. A multiplication table shows recounting from icons to tens, and is used when recounting 

from tens to icons introduces equations as reversed calculations. When recounting a total to or from 

tens, increasing the base means decreasing the altitude, and vice versa. As to multiplication, the 

commutative law says that the total stays unchanged when turning over a 3 by 4 block to a 4 by 3 

block. The associative law says that the total stays unchanged when including or excluding a factor 

from the unit, T = 2*(3*4) = (2*3)*4. The distributive law says that before adding, recounting must 

provide a common unit to bracket out, T = 2 3s + 4 5s = 1.1 5s + 4 5s = (1.1 + 4) 5s. 

 The tradition sees fractions as rational numbers to which the four basic operations can be applied. 

Thus, fractions can be added without units by finding a common denominator after splitting the 

numerator and the denominator into prime factors. Fractions are introduced after division, and is 

followed by ratios and percentages and decimal numbers seen as examples of fractions. 

The alternative sees fractions as per-numbers coming from double-counting in the same unit. As 

per-numbers, fractions are operators needing a number to become a number, thus added by areas, 

also called integration. Double-counting is introduced before addition. With factors as units, 

splitting a number in prime factors just means finding all possible units. 

After working with number sets, the tradition introduces working with letter sets and polynomial 

sets to which the four basic operations can be applied once more observing that only like terms can 

be added, but not mentioning that this is because it means the unit is the same. The alternative sees 

letters as units to bracket out during addition or subtraction, and that when multiplied or divided 

gives a composite unit. 

The tradition sees an equation as an open statement expressing equivalence between two number-

names containing an unknown variable. The statements are transformed by identical operations 

aiming at neutralizing the numbers next to the variable by applying the commutative and 

associative laws. 

2*x = 8 an open statement 

(2*x)*(1/2) = 8*(1/2) ½, the inverse element of 2, is multiplied to both names 

(x*2)*(1/2) = 4  since multiplication is commutative 

x*(2*(1/2)) = 4  since multiplication is associative 

x*1 = 4  by definition of an inverse element 

x = 4 by definition of a neutral element 

As to the equation 2 + 3*x = 14, the same procedure as above is carried out twice, first with 

addition then with multiplication. 

The alternative sees an equation as another name for a reversed calculation, to be reversed once 

more by recounting. Thus in the equation ‘2*x = 8’, recounting some 2s in 1s resulted in 8 1s, 
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which recounted back into 2s gives 2*x = 8 = (8/2)*2, showing that x = 8/2 = 4. And also showing 

that an equation is solved by moving to the opposite side with opposite calculation sign, the 

opposite side & sign method. 

The equation 2 + 3*x = 14, can be seen in two ways. As reversing a next-to addition of the two 

blocks, thus solved by differentiation, first removing the initial block and then recounting the rest in 

3s: x = (14-2)/3 = 4. Or as a walk that multiplying by 3 and then adding by 2 gives 14,  

x (*3→) 3*x (+2→) 3*x+2 = 14.  

Reversing the walk by subtracting 2 and dividing by 3 gives the initial number:  

x = 4 = (14-2)/3 (←/3) 14-2 (←-2) 14 

The answer is tested by once more walking forward, 3*4 + 2 = 12 + 2 = 14. 

The tradition sees a quadratic equation x^2 + b*x + c = 0 as a pure algebraic problem to be solved, 

first by factorizing, then by completing the square, and finally by using the solution formula. 

The alternative sees solving a quadratic equation as a problem combining algebra and geometry, 

where a square with the sides x+b/2 creates fives areas, x^2 and b/2*x twice and c and (b^2/4-c) 

where the first four disappear and leaves (x+b/2)^2 to be the latter, b^2/4-c. 

The tradition sees a function as an example of a relation between two sets where first-component 

identity implies second-component identity. And it gives the name ‘linear function’ to f(x) = a*x+b 

even if this is an affine function not satisfying the linear condition f(x+y) = f(x)*f(y), as does the 

proportionality formula f(x) = a*x. 

The alternative sees a function as a name for a formula containing two unspecified numbers or 

variables, typically x and y. Thus, a function is a fiction showing how the y-numbers depends on 

the x numbers as shown in a table or by a graph. 

The tradition sees proportionality as an example of a function satisfying the linear condition. The 

alternative sees proportionality as a name for double-counting in different units creating per-

numbers.  

The tradition sees geometry to be introduced in the order: plane geometry, coordinate geometry and 

trigonometry. 

The alternative has the opposite order. Trigonometry comes first grounded in the fact that halving a 

block by its diagonal allows the base and the altitude to be recounted in diagonals or in each other. 

This also allows a calculator to find pi from a sine formula. Next comes coordinate geometry 

allowing geometry and algebra to always go hand in hand so that algebraic formula can predict 

intersection points coming from geometrical constructions. 

The tradition has quadratic functions following linear functions, both examples of polynomials. 

The alternative sees affine functions as one example of constant change coming in five forms: 

constant y-change per x-change, constant y-percent-change per x-change, constant y-percent-

change per x-percent-change, constant y-change per x-change together with constant y-percent-

change per x-change, and finally constantly changing y- change. 

The tradition sees logarithm as defined as the integral of the function y = 1/x. 
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The alternative sees logarithm and root combined both solving power equations. Thus a^x = b gives 

x = loga(b); and x^a = b gives x = a√b. This shows the logarithm as a factor-counter and the root as 

a factor-finder. 

The tradition sees differential calculus as preceding integral calculus, and the gradient y’ = dy/dx is 

defined algebraically as the limit of y/x for x approaching 0, and geometrically as the slope of a 

tangent being the limit position of a secant with approaching intersection points. The limit is 

defined by an epsilon-delta criterium. 

The alternative sees calculus as grounded in adding blocks next-to each other. In primary school 

calculus occurs when performing next-to addition of 2 3s and 4 5s as 8s. In middle school calculus 

occurs when adding piecewise constant per-numbers, as 2m at 3m/s plus 4m at 5m/s. In high school 

calculus occurs when adding locally constant per-numbers, as 5seconds at 3m/s changing constantly 

to 4m/s. Geometrically, adding blocks means adding areas under a per-number graph. In the case of 

local constancy this means adding many strips, made easy by writing them as differences since 

many differences add up to one single difference between the terminal and initial numbers, thus 

showing the relevance of differential calculus. The epsilon-delta criterium is a straight forward way 

to formalize the three ways of constancy, globally and piecewise and locally, by saying that 

constancy means an arbitrarily small difference. 

Conclusion  

With 50 years of research, mathematics education should have improved significantly. Its lack of 

success as illustrated by OECD report ‘Improving Schools in Sweden’ made this paper ask: 

Applying sociological imagination when meeting Many without having predicates forced upon it by 

traditional mathematics, can we design a STEM-based core math curriculum aimed at making 

migrants pre-teachers and pre-engineers in two years?  

This depends on what we mean by mathematics. And, looking back, mathematics has meant 

different things through its long history, from a common label for knowledge to today’s ‘meta-

matism’ combining ‘meta-matics’ defining concepts by meaningless self-reference, and ‘mathe-

matism’ adding numbers without units thus lacking outside validity. So, inspired by Heidegger’s 

‘always question sentences, except for its subject’ we returned to the original Greek meaning of 

mathematics: Knowledge about Many by itself and in time and space.  

Observing Many by itself allows rebuilding mathematics as a ‘many-matics’, i.e. as a natural 

science about the physical fact Many, where counting by bundling leads to block-numbers that 

recounted in other units leads to proportionality and solving equations; where recounting sides in 

triangles leads to trigonometry; where double-counting in different units leads to per-numbers and 

fractions, both adding by their areas, i.e. by integration; where counting precedes addition taking 

place both on-top and next-to involving proportionality and calculus; where using a calculator to 

predict the counting result leads to the opposite order of operations: division before multiplication 

before subtraction before next-to and on-top addition; and where calculus occurs in primary school 

as next-to addition, and in middle and high school as adding piecewise and locally constant per-

numbers; and where integral calculus precedes differential calculus. 
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With water cycles fueled by the sun and run by gravity as exemplary situations, STEM offers 

various examples of Many in space and time since science and technology and engineering 

basically is about double-counting physical phenomena in different units. 

The designed STEM-based core math curriculum has been tested in parts with success at the 

educational level in Danish pre-university classes. It might also be tested on a research level if it 

becomes known through publishing, i.e., if it will be accepted at the review process. It will offer a 

sociological imagination absent from traditional research seen by many teachers as useless because 

of its many references.  

Questioning if traditional research is relevant to teachers, Hargreaves argues that 

What would come to an end is the frankly second-rate educational research which does not make 

a serious contribution to fundamental theory or knowledge; which is irrelevant to practice; which 

is uncoordinated with any preceding or follow-up research; and which clutters up academic 

journals that virtually nobody reads (Hargreaves, 1996, p. 7). 

Here difference-research tries to be relevant by its very design: A difference must be a difference to 

something already existing in an educational reality used to collect reliable data and to test the 

validity of its findings by falsification attempts.  

In a Swedish context, obsessive self-referencing has been called the ‘irrelevance of the research 

industry’ (Tarp, 2015, p. 31), noted also by Bauman as hindering research from being relevant: 

One of the most formidable obstacles lies in institutional inertia. Well established inside the 

academic world, sociology has developed a self-reproducing capacity that makes it immune to 

the criterion of relevance (insured against the consequences of its social irrelevance). Once you 

have learned the research methods, you can always get your academic degree so long as you 

stick to them and don’t dare to deviate from the paths selected by the examiners (as Abraham 

Maslow caustically observed, science is a contraption that allows non-creative people to join in 

creative work). Sociology departments around the world may go on indefinitely awarding 

learned degrees and teaching jobs, self-reproducing and self-replenishing, just by going through 

routine motions of self-replication. The harder option, the courage required to put loyalty to 

human values above other, less risky loyalties, can be, thereby, at least for a foreseeable future, 

side-stepped or avoided. Or at least marginalized. Two of sociology’s great fathers, with 

particularly sharpened ears for the courage-demanding requirements of their mission, Karl Marx 

and Georg Simmel, lived their lives outside the walls of the academia. The third, Max Weber, 

spent most of his academic life on leaves of absence. Were these mere coincidences? (Bauman, 

2014, p. 38) 

By pointing to institutional inertia as a sociological reason for the lack of research success in 

mathematics education, Bauman aligns with Foucault saying: 

It seems to me that the real political task in a society such as ours is to criticize the workings of 

institutions, which appear to be both neutral and independent; to criticize and attack them in such 

a manner that the political violence which has always exercised itself obscurely through them 

will be unmasked, so that one can fight against them. (Chomsky et al., 2006, p. 41) 



23 

 

Bauman and Foucault thus both recommend skepticism towards social institutions where 

mathematics education and research are two examples. In theory, institutions are socially created as 

rational means to a common goal, but as Bauman points out, a goal displacement easily makes the 

institution have itself as the goal instead thus marginalizing or forgetting its original outside goal. 

So, if a society as Sweden really wants to improve mathematics education, extra funding might just 

produce more researchers more eager to follow inside traditions than solving outside problems. 

Instead funding should force the universities to arrange curriculum architect compositions to allow 

alternatives to compete as to creativity and effectiveness, thus allowing the universities to 

rediscover their original outside rational goals and to change its routines accordingly.  

A situation described in several fairy tales; the Sleeping Beauty hidden behind the thorns of routines 

becoming rituals until awakened by the kiss of an alternative; and Cinderella making the prince 

dance, but only found when searching outside the established nobility. 
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ADDITION-FREE MIGRANT-MATH ROOTED IN STEM RE-COUNTING 

FORMULAS  

A curriculum architect is asked to avoid traditional mistakes when designing a curriculum for 

young migrants that will allow them to quickly become STEM pre-teachers and pre-engineers. 

Typical multiplication formulas expressing re-counting in different units suggest an addition-free 

curriculum. To answer the question ‘How many in total?’ we count and re-count totals in the same 

or in a different unit, as well as to and from tens; also, we double-count in two units to create per-

numbers, becoming fractions with like units. To predict, we use a re-count formula as a core 

formula in all STEM subjects.  

Keywords: STEM, migrant, elementary school mathematics, curriculum, PISA.  

Decreased PISA performance despite increased research 

Research in mathematics education has grown since the first International Congress on 

Mathematics Education in 1969. Likewise has funding, see e.g. Swedish Centre for Mathematics 

Education. Yet, despite extra research and funding, decreasing Swedish PISA result caused OECD 

to write the report “Improving Schools in Sweden” (2015a) describing its school system as “in need 

of urgent change” since “more than one out of four students not even achieving the baseline Level 2 

in mathematics at which students begin to demonstrate competencies to actively participate in life.” 

(p. 3). 

To find an unorthodox solution we pretend that a university in southern Sweden, challenged by 

numerous young male migrants, arranges a curriculum architect competition: “Theorize the low 

success of 50 years of mathematics education research; and derive from this theory a STEM based 

core curriculum allowing young migrants to return as STEM pre-teachers and pre-engineers.”  

Since mathematics education is a social institution, social theory may give a clue to the lacking 

research success and how to help migrants and how to improve schools in Sweden and elsewhere.  

Social theory looking at mathematics education 

Imagination as the core of sociology is described by Mills (1959). Bauman (1990) agrees by saying 

that sociological thinking “renders flexible again the world hitherto oppressive in its apparent fixity; 

it shows it as a world which could be different from what it is now” (p. 16).  

As to institutions, of which mathematics education is an example, he talks about rational action “in 

which the end is clearly spelled out, and the actors concentrate their thoughts and efforts on 

selecting such means to the end as promise to be most effective and economical (p. 79)”. He then 

points out that “The ideal model of action subjected to rationality as the supreme criterion contains 

an inherent danger of another deviation from that purpose - the danger of so-called goal 

displacement (p. 84).” 

One such goal displacement is saying that the goal of mathematics education is to learn 

mathematics since such a goal statement is meaningless by its self-reference. So, if mathematics 

isn’t the goal of mathematics education, what is? And, how well defined is mathematics after all? 

In ancient Greece, the Pythagoreans used mathematics, meaning knowledge in Greek, as a common 

label for their four knowledge areas: arithmetic, geometry, music and astronomy (Freudenthal, 
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1973), seen by the Greeks as knowledge about Many by itself, Many in space, Many in time and 

Many in time and space. And together forming the ‘quadrivium’ recommended by Plato as a 

general curriculum together with ‘trivium’ consisting of grammar, logic and rhetoric. 

With astronomy and music as independent knowledge areas, today mathematics should be a 

common label for the two remaining activities, geometry and algebra, both rooted in the physical 

fact Many through their original meanings, ‘to measure earth’ in Greek and ‘to reunite’ in Arabic. 

And in Europe, Germanic countries taught counting and reckoning in primary school and arithmetic 

and geometry in the lower secondary school until about 50 years ago when they all were replaced 

by the ‘New Mathematics’. Here the invention of the concept Set created a Set-based ‘meta-matics’, 

self-referential defining concepts top-down as examples of abstractions instead of bottom-up as 

abstractions from examples. But, then Russell looked at the set of sets not belonging to itself. Here 

a set belongs only if it does not: if M = A│AA then MM  MM. Thus pointing out that 

self-reference leads to the classical liar paradox ‘this sentence is false’ being false if true and true if 

false.  

In this way, Set changed grounded classical mathe-matics into today’s self-referring ‘meta-matism’, 

a mixture of meta-matics and ‘mathe-matism’ true inside but seldom outside classrooms where 

adding numbers without units as ‘2 + 3 IS 5’ meet counter-examples as e.g. 2weeks + 3days is 17 

days; in contrast to ‘2*3 = 6’ stating that 2 3s can always be re-counted as 6 1s.  

Difference research looks at mathematics education 

Inspired by the ancient Greek sophists (Russell, 1945), wanting to avoid being patronized by 

choices presented as nature, ‘Difference-research’ (Tarp, 2017) is searching for hidden differences 

making a difference. An additional inspiration comes from existentialist philosophy described by 

Sartre (2007, p. 20) as holding that “Existences precedes essence”. So, to avoid a goal displacement 

in math education, difference-research asks: How will math look like if grounded in its outside root, 

Many? 

To answer we allow Many to open itself for us, so that, as curriculum architects, sociological 

imagination may allow us to construct a mathematics core curriculum based upon examples of 

Many in a STEM context (Lawrenz et al, 2017). So, we now return to the original Greek meaning 

of mathematics as knowledge about Many by itself and in time and space; and use Grounded 

Theory (Glaser & Strauss, 1967), lifting Piagetian knowledge acquisition (Piaget, 1969) from a 

personal to a social level, to allow Many create its own categories and properties. 

Meeting Many creates a ‘count-before-adding’ curriculum  

Meeting Many, we ask “How many in Total?” To answer, we total by counting to create number-

language sentences as e.g. T = 2 3s, containing a subject and a verb and a predicate as in a word-

language sentence; and connecting the outside total T with its inside predicate 2 3s (Tarp, 2018b). 

Rearranging many 1s into one symbol with as many strokes as it represents (four strokes in the 4-

con, five in the 5-icon, etc.) creates icons to be used as units when counting: 

            I         II           III          IIII         IIIII         IIIIII       IIIIIII       IIIIIIII     IIIIIIIII 

                                                                                                                                   1          2             3             4             5              6             7              8              9 
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Holding 4 fingers together 2 by 2, a 3year-old will say ‘That is not 4, that is 2 2s’, thus describing 

what exists, bundles of 2s and 2 of them. This inspires ‘bundle-counting’, re-counting a total in 

icon-bundles to be stacked as bundle- or block-numbers, which can be re-counted and double-

counted before being processed by on-top and next-to addition, direct or reversed. Thus, a total T of 

5 1s is re-counted in 2s as T = 2 2s & 1; described by ‘bundle-writing’, T = 2B1 2s; or by ‘decimal-

writing’, T = 2.1 2s, where, with a bundle-cup, a decimal point separates the bundles inside from 

the outside unbundled singles; or by ‘deficit-writing’, T = 3B-1 2s = 3.-1 2s = 3 bundles less 1 2s. 

So, to count a total T we take away bundles B (thus rooting and iconizing division as a broom 

wiping away the bundles) to be stacked (thus rooting and iconizing multiplication as a lift stacking 

the bundles into a block) to be moved away to look for unbundled singles (thus rooting and 

iconizing subtraction as a trace left when dragging the block away). A calculator thus predicts the 

result by a re-count formula T = (T/B)*B saying that ‘from T, T/B times, B can be taken away’: 

entering ‘5/2’ on a calculator gives ‘2.some’, and ‘5 – 2x2’ gives ‘1’, so T = 5 = 2B1 2s. The 

unbundled can be placed next-to or on-top the stack thus rooting decimals and fractions. 

The re-count formula occurs all over. With proportionality: y = c*x; in trigonometry as sine, cosine 

and tangent: a = (a/c)*c = sinA*c and b = (b/c)*c = cosA*c and a = (a/b)*b = tanA*b; in coordinate 

geometry as line gradients: y = y/x = c* x; and in calculus as the derivative, dy = (dy/dx)*dx 

= y’*dx. In economics, the re-count formula is a price formula: $ = ($/kg)*kg, $ = ($/day)*day, etc. 

Re-counting in the same unit or in a different unit 

Once counted, totals can be re-counted in the same unit, or in a different unit. Re-counting in the same 

unit, changing a bundle to singles allows re-counting a total of 2B1 2s as 1B3 2s with an outside 

‘overload’; or as 3B-1 2s with an outside ‘underload’ thus rooting negative numbers. This eases 

division: 336 = 33B6 = 28B56, so 336/7 = 4B8 = 48; or 336 = 35B-14, so 336/7 = 5B-2 = 48. Re-

counting in a different unit means changing unit, also called proportionality. Asking ‘3 4s is how many 

5s?’, sticks show that 3 4s becomes 2B2 5s. Entering ‘3*4/5’ we ask a calculator ‘from 3 4s we take 

away 5s’. The answer, ‘2.some’, predicts that the singles come from taking away 2 5s, now asking 

‘3*4 – 2*5’. The answer, ‘2’, predicts that 3 4s can be re-counted in 5s as 2B2 5s or 2.2 5s.  

Re-counting to and from tens 

Asking ‘3 4s = ? tens’ is called times tables to be learned by heart. Using sticks to de-bundle and re-

bundle shows that 3 4s is 1.2 tens. Using the re-count formula is impossible since the calculator has 

no ten-button. Instead it is programmed to give the answer directly as 3*4 = 12, thus using a short 

form that leaves out the unit and misplaces the decimal point one place to the right. Re-counting 

from tens to icons by asking ‘35 = ? 7s’ is called solving an equation x*7 = 35. It is easily solved by 

re-counting 35 in 7s: x*7 = 35 = (35/7)*7. So x = 35/7, showing that equations are solved by 

moving to the opposite side with the opposite calculation sign. 

Double-counting creates proportionality as per-numbers 

Counting a quantity in 2 different physical units gives a ‘per-number’ as e.g. 2$ per 3kg, or 2$/3kg. 

To answer the question ‘T = 6$ = ?kg’, we re-count 6 in the per-number 2s: 6$ = (6/2)*2$ = 

(6/2)*3kg = 9kg. Double-counting in the same unit creates fractions: 2$/3$ = 2/3, and 2$/100$ = 

2/100 = 2%.  
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A short curriculum in addition-free mathematics 

01. To stress the importance of bundling, the counting sequence can be: 01, 02, …, 09, 10, 11 etc.; 

or 01, 02, 03, 04, 05, Ten less 4, T-3, T-2, T-1, Ten, Ten and 1, T and 2, etc. 

02. Ten fingers can be counted also as 13 7s, 20 5s, 22 4s, 31 3s, 101 3s, 5 2s, and 1010 2s. 

03. A Total of five fingers can be re-counted in three ways (standard and with over- and underload): 

T = 2B1 5s = 1B3 5s = 3B-1 5s = 3 bundles less 1 5s. 

04. Multiplication tables can be formulated as re-counting from icon-bundles to tens and use 

underload counting after 5: T = 4*7 = 4 7s = 4*(ten less 3) = 40 less 12 = 30 less 2 = 28. 

05. Dividing by 7 can be formulated as re-counting from tens to 7s and use overload counting: T = 

336 /7 = 33B6 /7 = 28B56 /7 = 4B8 = 48. 

06. Solving proportional equations as 3*x = 12 can be formulated as re-counting from tens to 3s: 

3*x = 12 = (12/3)*3 giving x = 12/3 illustrating the relevance of the ‘opposite side & sign’ method. 

07. Proportional tasks can be done by re-counting in the per-number: With 3$/4kg, 20kg = 

(20/4)*4kg = (20/4)*3$ = 15$; and 18$ = (18/3)*3$ = (18/3)*4kg = 24kg. 

08. Fractions and percentages are per-numbers coming from double-counting in the same unit, 2/3 = 

2$/3$. So 2/3 of 60 = 2$/3$ of 60$, where 60$ = (60/3)*3$ then gives (60/3)*2$ = 40$. 

09. Trigonometry can precede plane and coordinate geometry to show how, in a box halved by its 

diagonal, the sides can be mutually re-counted as e.g. a = (a/c)*c = sinA*c, and a =  (a/b)*b = tanA*b. 

10. Counting by stacking bundles into adjacent blocks leads to the number formula or bundle 

formula called a polynomial: T = 456 = 4*BundleBundle + 5*Bundle + 6*single = 4*B^2 + 5*B + 

6*1. In its general form, the number formula T = a*x^2 + b*x + c contains the different formulas 

for constant change: T = a*x (proportionality), T = a*x^2 (acceleration), T = a*x^c (elasticity) and 

T = a*c^x (interest rate); as well as T = a*x+b (linearity, or affinity, strictly). 

11. Predictable change roots pre-calculus (if constant) and calculus (if changing). Unpredictable 

change roots statistics to ‘post-dict’ numbers by a mean and a deviation to be used by probability to 

pre-dict a confidence interval for numbers we else cannot pre-dict. 

12. Integral calculus can precede differential calculus and include adding both piecewise and locally 

constant (continuous) per-numbers. Adding 2kg at 3$/kg and 4kg at 5$/kg, the unit-numbers 2 and 3 

add directly, but the per-numbers must be multiplied into unit-numbers. So, both per-numbers and 

fractions must be multiplied by the units before being added as the area under the per-number graph. 

Meeting Many in a STEM context 

OECD (2015b) says: ‘In developed economies, investment in STEM disciplines (science, 

technology, engineering and mathematics) is increasingly seen as a means to boost innovation and 

economic growth.’ STEM thus combines knowledge about how humans interact with nature to 

survive and prosper: Mathematical formulas predict nature’s behavior, and this knowledge, logos, 

allows humans to invent procedures, techne, and to engineer artificial hands and muscles and 

brains, i.e. tools, motors and computers, that combined to robots will help transforming nature into 

human necessities. 
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Nature as heavy things in motion 

To meet, we must specify space and time in a nature consisting of heavy things at rest or in motion. 

So, in general, we see that what exists in nature is matter in space and time.  

A falling ball introduces nature’s three main factors, matter and force and motion, like the three 

social factors, humans and will and obedience. As to matter, we observe three balls: the earth, the 

ball, and molecules in the air. Matter houses two forces, an electro-magnetic force keeping matter 

together when colliding, and gravity pumping motion in and out of matter when it moves in the 

same or in the opposite direction of the force. In the end, the ball is at rest on the ground having 

transferred its motion through collisions to molecules in the air; meaning that the motion has lost its 

order and can no longer be put to work. In technical terms: as to motion, its energy stays constant, 

but its disorder (entropy) increases. But, if the disorder increases, how is ordered life possible? 

Because, in the daytime the sun pumps in high-quality, low-disorder light-energy; and in the 

nighttime the space sucks out low-quality, high-disorder heat-energy; if not, global warming would 

be the consequence. 

So, a core STEM curriculum could be about cycling water. Heating transforms water from solid to 

liquid to gas, i.e. from ice to water to steam; and cooling does the opposite. Heating an imaginary 

box of steam makes some molecules leave, so the lighter box is pushed up by gravity until 

becoming heavy water by cooling, now pulled down by gravity as rain in mountains and through 

rivers to the sea. On its way down, a dam can transform falling water into electricity.  

In the sea, water contains salt. Meeting ice at the poles, water freezes but the salt stays in the water 

making it so heavy it is pulled down by gravity, elsewhere pushing warm water up thus creating 

cycles in the ocean pumping warm water to cold regions.  

The two water-cycles fueled by the sun and run by gravity leads on to other STEM areas: to 

dissolving matter in water; to the trajectory of a ball pulled down by gravity; to put steam and 

electrons to work in a power plant creating an electrical circuit transporting energy from a source to 

many consumers.  

In nature, we count heaviness in kilograms, space in meters and time in seconds. Heavy things in 

motion have a momentum = mass*velocity, a multiplication formula as most STEM formulas 

expressing re-counting by per-numbers: kilogram = (kilogram/cubic-meter) * cubic-meter = density 

* cubic-meter; meter = (meter/second) * second = velocity * second; force = (force/square-meter) * 

square-meter = pressure * square-meter, where force is the per-number change in momentum per 

second. Thus, STEM-subjects are swarming with per-numbers: kg/m^3 (density), meter/second 

(velocity), Joule/second (power), Joule/kg (melting), Newton/m^2 (pressure), etc. 

Warming and boiling water 

In a water kettle, a double-counting can take place between the time elapsed and the energy used to 

warm the water to boiling, and to transform the water to steam. 

If pumping in 410 kiloJoule will heat 1.4 kg water 70 degrees we get a double per-number 

410/70/1.4 Joule/degree/kg or 4.18 kJ/degree/kg, called the specific heat capacity of water. If 

pumping in 316 kJ will transform 0.14 kg water at 100 degrees to steam at 100 degrees, the per-

number is 316/0.14 kJ/kg or 2260 kJ/kg, called the heat of evaporation for water. 
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Dissolving material in water 

In the sea, salt is dissolved in water, described as the per liter number of moles, each containing a 

million billion billion molecules. A mole of salt weighs 59 gram, so re-counting 100 gram salt in 

moles we get 100 gram = (100/59)*59 gram = (100/59)*1 mole = 1.69 mole, that dissolved in 2.5 

liter has a strength as 1.69 moles per 2.5 liters or 1.69/2.5 moles/liters, or 0.676 moles/liter. 

Building batteries with water 

At our planet life exists in three forms: black, green and grey cells. Green cells absorb the sun’s 

energy directly; and by using it to replace oxygen with water, they transform burned carbon dioxide 

to unburned carbohydrate storing the energy for grey cells, releasing the energy by replacing water 

with oxygen; or for black cells that by removing the oxygen transform carbohydrate into 

hydrocarbon storing the energy as fossil energy. Atoms combine by sharing electrons. At the 

oxygen atom the binding force is extra strong releasing energy when burning hydrogen and carbon 

to produce harmless water H2O, and carbon dioxide CO2, producing global warming if not bound 

in carbohydrate batteries. In the hydrocarbon molecule methane, CH4, the energy comes from using 

4 Os to burn it. 

Technology and engineering: letting steam and electrons produce and distribute energy 

A water molecule contains two hydrogen and one oxygen atom weighing 2*1+16 units. Thus a 

mole of water weighs 18 gram. Since the density of water is roughly 1000 gram/liter, the volume of 

1000 moles is 18 liters. Transformed into steam, its volume increases to more than 22.4*1000 liters, 

or an increase factor of 22,400 liters per 18 liters = 1244 times. But, if kept constant, instead the 

inside pressure will increase as predicted by the ideal gas law, p*V = n*R*T, combining the 

pressure p, and the volume V, with the number of moles n, and the absolute temperature T, which 

adds 273 degrees to the Celsius temperature. R is a constant depending on the units used. The 

formula expresses different proportionalities: The pressure is direct proportional with the number of 

moles and the absolute temperature so that doubling one means doubling the other also; and inverse 

proportional with the volume, so that doubling one means halving the other.  

Thus, with a piston at the top of a cylinder with water, evaporation will make the piston move up, 

and vice versa down if steam is condensed back into water. This is used in steam engines. In the 

first generation, water in a cylinder was heated and cooled by turn. In the next generation, a closed 

cylinder had two holes on each side of an interior moving piston thus increasing and decreasing the 

pressure by letting steam in and out of the two holes. The leaving steam is visible on e.g. steam 

locomotives.  

Power plants use a third generation of steam engines. Here a hot and a cold cylinder are connected 

with two tubes allowing water to circulate inside the cylinders. In the hot cylinder, heating increases 

the pressure by increasing both the temperature and the number of steam moles; and vice versa in 

the cold cylinder where cooling decreases the pressure by decreasing both the temperature and the 

number of steam moles condensed to water, pumped back into the hot cylinder in one of the tubes. 

In the other tube, the pressure difference makes blowing steam rotate a mill that rotates a magnet 

over a wire, which makes electrons move and carry electrical energy to industries and homes. 
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An electrical circuit 

Energy consumption is given in Watt, a per-number double-counting the number of Joules per 

second. Thus, a 2000 Watt water kettle needs 2000 Joules per second. The socket delivers 220 

Volts, a per-number double-counting the number of Joules per charge-unit. Re-counting 2000 in 

220 gives (2000/220)*220 = 9.1*220, so we need 9.1 charge-units per second, which is called the 

electrical current counted in Ampere. To create this current, the kettle must have a resistance R 

according to a circuit law Volt = Resistance*Ampere, i.e., 220 = R*9.1, or Resistance = 24.2 

Volt/Ampere called Ohm. Since Watt = Joule per second = (Joule per charge-unit)*(charge-unit per 

second) we also have a second formula, Watt = Volt*Ampere. Thus, with a 60 Watt and a 120 Watt 

bulb, because of proportionality the latter needs twice the current, and consequently half the 

resistance of the former. 

How high up and how far out 

An inclined gun sends a ping-pong ball upwards. This allows a double-counting between the 

distance and the time to the top, 5 meters and 1 second. The gravity decreases the vertical speed 

when going up and increases it when going down, called the acceleration, a per-number counting 

the change in speed per second. To find its initial speed we turn the gun 45 degrees and count the 

number of vertical and horizontal meters to the top as well as the number of seconds it takes, 2.5 

meters and 5 meters and 0,71 seconds. From a folding ruler we see, that now the total speed is split 

into a vertical and a horizontal part, both reducing the total sped with the same factor sin45 = cos45 

= 0,707. 

The vertical speed decreases to zero, but the horizontal speed stays constant. So we can find the 

initial speed u by the formula: Horizontal distance to the top position = horizontal speed * time, or 

with numbers: 5 = (u*0,707)*0,71, solved as u = 9.92 meter/seconds by moving to the opposite side 

with opposite calculation sign, or by a solver-app. 

Compared with the horizontal, the vertical distance is halved, but the speed changes from 9.92 to 

9.92*0.707 = 7.01. However, the speed squared is halved from 9.92*9.92 = 98.4 to 7.01*7.01 = 

49.2.  

So horizontally, there is a proportionality between the distance and the speed. Whereas vertically, 

there is a proportionality between the distance and the speed squared, so that doubling the vertical 

speed will increase the vertical distance four times. 

Adding addition to the curriculum 

Once counted as block-numbers, totals can be added next-to as areas, thus rooting integral calculus; 

or on-top after being re-counted in the same unit, thus rooting proportionality. And both next-to and 

on-top addition can be reversed, thus rooting differential calculus and equations where the question 

2 3s + ? 4s = 5 7s leads to differentiation: ? = (5*7 – 2*3)/4 = T/4. Traveling in a coordinate 

system, distances add directly when parallel; and by their squares when perpendicular.  

The number formula T = 456 = 4*B^2 + 5*B + 6*1 shows there are four ways to unite numbers: 

addition and multiplication add changing and constant unit-numbers; and integration and power 

unite changing and constant per-numbers. And since any operation can be reversed: subtraction and 
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division split a total into changing and constant unit-numbers; and differentiation and root & 

logarithm split a total in changing and constant per-numbers (Tarp, 2018b). 

Conclusion and recommendation 

This paper argues that 50 years of unsuccessful mathematics education research may be caused by a 

goal displacement seeing mathematics as the goal instead of as an inside means to the outside goal, 

mastery of Many in time and space. The two views lead to different kinds of mathematics: a set-

based top-down ‘meta-matics’ that by its self-reference is indeed hard to teach and learn; and a 

bottom-up Many-based ‘Many-matics’ simply saying “To master Many, counting and re-counting 

and double-counting produces constant or changing unit-numbers or per-numbers, uniting by 

adding or multiplying or powering or integrating.“ A proposal for two separate twin-curricula in 

counting and adding is found in Tarp (2018a). Thus, the simplicity of mathematics as expressed in a 

‘count-before-adding’ curriculum allows replacing line-numbers with block-numbers; and allows 

learning core mathematics as proportionality, calculus, equations and per-numbers in early 

childhood. Imbedded in STEM-examples, young migrants learn core STEM subjects at the same 

time, thus allowing them to become STEM pre-teachers or pre-engineers to help develop or rebuild 

their own country. The full curriculum can be found in a 27-page paper (Tarp, 2017). Thus, it is 

possible to solve STEM problems without learning addition, that is not well-defined since blocks 

can be added both on-top using proportionality to make the units the same, and next-to by areas as 

integral calculus. 
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MASTERING MANY BY COUNTING, RE-COUNTING AND DOUBLE-

COUNTING BEFORE ADDING ON-TOP AND NEXT-TO 

Observing the quantitative competence children bring to school, and by using difference-research 

searching for differences making a difference, we discover a different ‘Many-matics’. Here digits 

are icons with as many sticks as they represent. Operations are icons also, used when bundle-

counting produces two-dimensional block-numbers, ready to be re-counted in the same unit to 

remove or create overloads to make operations easier; or in a new unit, later called 

proportionality; or to and from tens rooting multiplication tables and solving equations. Here 

double-counting in two units creates per-numbers becoming fractions with like units; both being, 

not numbers, but operators needing numbers to become numbers. Addition here occurs both on-top 

rooting proportionality, and next-to rooting integral calculus by adding areas; and here 

trigonometry precedes geometry.  

Keywords: numbers, operations, proportionality, calculus, early childhood  

Being highly useful to the outside world, mathematics is a core part of institutionalized education. 

Consequently, research in mathematics education has grown as witnessed e.g. by the International 

Congress on Mathematics Education taking place each four year since 1969. However, despite 50 

years of research, many countries still experience poor results in the Programme for International 

Student Assessment (PISA). In the former model country Sweden this caused the Organisation for 

Economic Co-operation and Development (OECD) to write the report ‘Improving Schools in 

Sweden’ describing its school system as ‘in need of urgent change’ since ‘more than one out of four 

students not even achieving the baseline Level 2 in mathematics at which students begin to 

demonstrate competencies to actively participate in life.’ (OECD, 2015, p. 3). 

Mathematics thus seems to be hard by nature. But, with mathematics and education as social 

institutions, a different answer, by choice, may come from sociology, having imagination as a core 

part as pointed out by Mills (1959). Bauman (1990) agrees when talking about organizations:  

Sociological thinking is, one may say, a power in its own right, an anti-fixating power. It 

renders flexible again the world hitherto oppressive in its apparent fixity; it shows it as a 

world which could be different from what it is now. (p.16) Rational action (..) is one in 

which the end to be achieved is clearly spelled out, and the actors concentrate their thoughts 

and efforts on selecting such means to the end as promise to be most effective and 

economical. (p.79) Last but not least, the ideal model of action subjected to rationality as the 

supreme criterion contains an inherent danger of another deviation from that purpose - the 

danger of so-called goal displacement. (..) The survival of the organization, however 

useless it may have become in the light of its original end, becomes the purpose in its own 

right: the new end against which the organization tends to measure the rationality of its 

performance (p.84). 

It is a general opinion that the goal of mathematics education is to learn mathematics. However, this 

goal is self-referring. So maybe traditional mathematics has a goal displacement hiding a different 

more fruitful way to the outside goal, to master Many as it occurs in space and time? 
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Difference-research 

To find differences we use ‘Difference-research’ (Tarp, 2018a) searching for differences making a 

difference, thus containing two parts: finding a difference, and testing it to see if it makes a 

difference. This paper focuses on the first part in order to find differences that can be tested to 

create a background for a possible paradigm shift (Kuhn, 1959). 

Difference-research builds on sociological imagination; and on the skeptical thinking of the ancient 

Greek sophists warning against choice presented as nature. Thus disagreeing with Plato seeing 

choice as an illusion since the physical is but examples of meta-physical forms visible only to 

philosophers educated at his academy, later by Christianity turned into monasteries before being 

changed back again by the Reformation. In the Renaissance, this created the skeptical thinking of 

natural science, which rooted the Enlightenment century with its two republics, the American and 

the French (Russell, 1945).  

Where France now has its fifth republic, the USA still has its first with skepticism as pragmatism 

and symbolic interactionism and grounded theory. To protect its republic, France has developed a 

skepticism inspired by the German thinker Heidegger, seen by Bauman as starting ‘the second 

Copernican revolution’ by asking: What is ‘is’? (Bauman, 1992, p. ix).  

Heidegger (1962) sees three of our seven basic is-statements as describing the core of Being: ‘I am’ 

and ‘it is’ and ‘they are’; or, I exist in a world together with It and with They, with Things and with 

Others. To have real existence, the ‘I’ must create an authentic relationship to the ‘It’. However, 

this is made difficult by the ‘dictatorship’ of the ‘They’, shutting the ‘It’ up in a predicate-prison of 

idle talk, gossip. 

Heidegger thus uses existentialist thinking, described by Sartre (Marino, 2004) as holding that 

‘existence precedes essence’ (p. 22). In France, Heidegger inspired the poststructuralist thinking 

pointing out that society forces words upon you to diagnose you so it can offer cures including one 

you cannot refuse, education, that forces words upon the things around you, thus forcing you into an 

unauthentic relationship to yourself and your world (Foucault, 1995; Lyotard, 1984; Tarp, 2016). 

Difference-research tells what can be different from what cannot. From a Heidegger view, an is-

sentence contains two things: a subject that exists and cannot be different, and a predicate that can 

and that may be gossip masked as essence, provoking ‘the banality of Evil’ (Arendt, 1963) if 

institutionalized. So, to discover its true nature, we need to meet the subject, Many, outside the 

predicate-prison of traditional mathematics. We will use Grounded Theory (Glaser and Strauss, 

1967), lifting Piagetian knowledge acquisition (Piaget, 1970) from a personal to a social level, to 

allow Many create its own categories and properties. In this way, we can see if our observations can 

be assimilated to traditional mathematics or will suggest it be accommodated. 

Our Two Languages with Word- and Number-Sentences 

To communicate we have two languages, a word-language and a number-language. The word-

language assigns words to things in sentences with a subject, a verb, and an object or predicate: 

‘This is a chair’. As does the number-language assigning numbers instead: ‘the 3 chairs each have 4 

legs’, abbreviated to ‘the total is 3 fours’, or ‘T = 3 4s’ or ‘T = 3*4’. Unfortunately, the tradition 



35 

 

hides the similarity between word- and number-sentences by leaving out the subject and the verb by 

just saying ‘3*4 = 12’. 

Both languages have a meta-language, a grammar, describing the language, describing the world. 

Thus, the sentence ‘this is a chair’ leads to a meta-sentence ‘’is’ is an auxiliary verb’. Likewise, the 

sentence ‘T = 3*4’ leads to a meta-sentence ‘’*’ is a commutative operation’.  

Since the meta-language speaks about the language, we should teach and learn the language before 

the meta-language. This is the case with the word-language only. Instead its self-referring set-based 

form has turned mathematics into a grammar labeling its outside roots as ‘applications’, used as 

means to dim the impeding consequences of teaching a grammar before its language.  

So, using full sentences including the subject and the verb in number-language sentences is a 

difference to the tradition; as is teaching language before grammar. 

Mathematics, Rooted in Many, or in Itself  

The Pythagoreans used mathematics, meaning knowledge in Greek, as a common label for their 

four knowledge areas: arithmetic, geometry, music and astronomy (Freudenthal, 1973), seen by the 

Greeks as knowledge about Many by itself, Many in space, Many in time and Many in space and 

time. Together they formed the ‘quadrivium’ recommended by Plato as a general curriculum 

together with ‘trivium’ consisting of grammar, logic and rhetoric (Russell, 1945). 

With astronomy and music as independent areas, today mathematics should be a common label for 

the two remaining activities, geometry and algebra, both rooted in the physical fact Many through 

their original meanings, ‘to measure earth’ in Greek and ‘to reunite’ in Arabic.  

However, 50 years ago the set-concept created a self-referring ‘New Math’ or ‘meta-matics’ with 

concepts defined top-down as examples from abstractions instead of bottom-up as abstractions from 

examples. And neglecting that Russell, by looking at the set of sets not belonging to itself, showed 

that self-reference leads to the classical liar paradox ‘this sentence is false’ being false if true and 

true if false: If M = A│AA then MM  MM.  

So, to find a difference we now return to the Greek origin to meet Many openly to uncover a 

‘Many-matics’ as a natural science about Many. 

Meeting Many, Children use Block-numbers to Count and Share 

How to master Many can be observed from preschool children. Asked ‘How old next time?’, a 

3year-old child will say ‘Four’ and show 4 fingers; but will react strongly if held together 2 by 2, 

‘That is not 4, that is 2 2s.’  

Children thus describes what exists in the world: bundles of 2s, and 2 of them. So, what children 

bring to school is 2-dimensional block-numbers, illustrated geometrically by LEGO blocks, 

together with some quantitative competence. Children thus love re-counting 5 sticks in 2s in various 

ways as 1 2s & 3, as 2 2s & 1, and as 3 2s less 1.  

Sharing nine cakes, four children take one by turn saying ‘I take 1 of each 4’. With 1 left they might 

say ‘let’s count it as 4’. Thus, children share by taking away 4s from 9, and by taking away 1 per 4, 

and by taking 1 of 4 parts.  
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Children quickly observe the difference between a ‘stack-number’ as 6 = 3 2s or 2 3s, and a prime 

number as 3, serving only as a bundle-number by always leaving singles if stacked. 

Finally, by turning and splitting 2-dimensional or 3-dimensional blocks, children see their 

commutative, distributive and associative properties as self-evident: of course, 2 3s is the same as 3 

2s; and 6 3s can be split in 4 3s and 2 3s; and 2 3*4s is the same as 2*3 4s. 

Meeting Many Openly 

Many exists in space and time as multiplicity and repetition. Meeting Many we ask: ‘how many in 

total?’ To answer, we count and add. We count by bundling and stacking as seen when writing out 

fully the total T = 456 = 4*B^2 + 5*B + 6*1 showing three stacks or blocks added next-to each 

other: one with 4 bundles of bundles, one with 5 bundles, and one with 6 unbundled singles. 

Typically, we use ten as the bundle-size, formally called a base. 

Digits occur by uniting e.g. five ones to one fives, rearranged as an icon with five strokes if written 

less sloppy. As the bundle-size, ten needs no icon when counted as 10, one bundle and no 

unbundled. Then follow eleven and twelve coming from Danish Vikings counting ‘one left’ and 

‘two left’. 

            I         II           III          IIII         IIIII         IIIIII       IIIIIII       IIIIIIII     IIIIIIIII 

                                                                                                                                   1          2             3             4             5              6             7              8              9 

Figure 1.  Digits as icons with as many sticks as they represent. 

Counting by Bundling 

We count in several ways. Some gather-hunter cultures count ‘one, two, many’. Agriculture needs 

to differentiate degrees of Many and typically bundles in tens. To include the bundle, we can count 

‘0Bundle1, 0B2, 0B3,…, 1B, 1B1, 1B2’, etc.; or ‘0.1 tens, 0.2 tens’, etc., using a decimal point to 

separate the bundles from the unbundled singles. To signal nearness to the bundle we can count ‘1, 

2, …, 7, bundle less 2, bundle less 1, bundle’, etc. Thus a number always contains three numbers: a 

number of bundles, a number of singles, and a number for the bundle-size.  

Bundle-counting, we ask e.g. ‘A total of 7 is how many 3s?’ Using blocks, we stack the 3-bundles 

on-top of each other. The single can be placed next-to, or on-top counted in 3s. Thus, the result of 

counting 7 in 3s, T = 2 3s & 1, can be written as T = 2B1 3s using ‘bundle-writing’, and as T = 2.1 

3s using ‘decimal-writing’, and as T = 2 1/3 3s using ‘fraction-writing’. 

                             
                             
                             

Figure 2.  Seven bundle-counted as 2Bundle1 3s, as 2.1 3s, and as 2 1/3 3s. 

Bundle-counting in Space and Time  

We include space and time by using ‘geometry-counting’ in space, and ‘algebra-counting’ in time. 

Counting in space, we stack the bundles and report the result on an abacus in ‘geometry-mode’. 

Here the total 7 is on the below bar with 1 unbundled and a block with 2 bundles on the bars above.  
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Figure 3.  Seven bundle-counted as 2B1 3s on an abacus in geometry-mode.  

Counting in time, we count the bundles and report the result on an abacus in ‘algebra-mode’. Here 

the total 7 is on the below bar with 1 unbundled and the number of bundles on the bars above.  

                
                
                
                
                 

Figure 4.  Seven bundle-counted as 2.1 3s on an abacus in algebra-mode. 

A Calculator Predicts Counting-results 

Iconizing the counting processes also, a calculator can predict a counting-result. A stack of 2 3s is 

iconized as 2x3 (or 2*3) showing a lift used 2 times to stack the 3s. As for taking away, subtraction 

shows the trace left when taking away just once, and division shows the broom wiping away several 

times.  

So, entering ‘7/3’ we ask the calculator ‘from 7, 3s can be taken away how many times?’ The 

answer is ‘2. some’. To find the leftover singles we take away the stack of 2 3s by asking ‘7 – 2*3’. 

From the answer ‘1’ we conclude that 7 = 2B1 3s. Showing ‘7 – 2*3 = 1’, a display indirectly 

predicts that 7 can be re-counted as 2 3s and 1, or as 2B1 3s or 2.1 3s.  

 

7 / 3  

7 – 2 * 3 

2.some 

1 

Figure 5.  A calculator predicts how 7 re-counts in 3s as 2.1 3s. 

A calculator thus uses a ‘re-count formula‘, T = (T/B)*B, saying that ‘from T, T/B times, Bs can be 

taken away’; and a ‘re-stack formula’, T = (T–B)+B, saying that ‘from T, T–B is left, if B is taken 

away and placed next-to’. The formulas may be illustrated by LEGO blocks. The re-count formula 

introduces early algebra (Kieran, Pang, Schifter and Ng, 2016) from grade one; and it occurs all 

over mathematics and science as proportionality formulas. Likewise, the early use of a calculator 

shows the importance of mathematics as a language for prediction. 

Cup-Counting Allows Re-Counting in the Same Unit 

Cup-counting uses a cup when bundle-counting e.g. 7 in 3s. For each bundle we place a stick inside 

the cup, leaving the unbundled singles outside.  

T = 7 = I I I I I I I  →  III III I     →   [▐▐ ] I     →   2B1 3s = 2.1 3s 

One stick moves outside the cup as a bundle of 1s, that moves back inside as 1 bundle. This will 

change the ‘normal’ form to an ‘overload’, or to an ‘underload’ leading to negative numbers that 

may be used freely in childhood even if adults abstain from doing so:  
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T = 7 = I I I I I I I  →  III I I I I      →  [▐ ] I I I I  →   1B4 3s = 1.4 3s 

T = 7 = I I I I I I I  →  III III I II II  →  [▐▐▐ ] II  →  3B-2 3s = 3.-2 3s 

Re-Counting in a Different Unit 

Re-counting in a different unit means changing units, also called proportionality. Re-counting 3 4s 

in 5s, the re-count formula and a calculator predict the result 2 5s & 2 by entering ‘3*4/5’ and 

taking away the 2 5s. 

3 * 4 / 5    

3 * 4 – 2 * 5 

2.some 

2 

Figure 6.  A calculator predicts how 3 4s re-counts in 5s as 2.2 5s. 

Re-Counting from Icons to Tens 

A calculator has no ten-button. Instead, to re-count an icon-number as 3 4s in tens, it gives the result 

1.2 tens directly in a short form that leaves out the unit and misplaces the decimal point one place to 

the right, strangely enough called a ‘natural’ number. 

3 * 4  12 

Figure 7.  A calculator predicts how 3 4s re-counts in tens as 1.2 tens. 

Re-counting from icons to tens, 3 4s is a geometrical block that increases its base. Therefore, it 

must decrease its height to keep the total unchanged.  

Re-counting in tens is called multiplication tables to be learned by heart. However, the ten-by-ten 

table can be reduced to a 4-by-4 table since 5 is half of ten and 6 is ten less 4, and 7 is ten less 3 etc. 

Thus T = 4*7 = 4 7s that re-counts in bundles of tens as 

T = 4*7 = 4*1B-3 tens = 4B-12 tens = 3B-2 tens = 2B8 tens = 28 

Such results generalize to algebraic formulas as a*(b – c) = a*b – a*c.  

Re-Counting from Tens to Icons 

Re-counting from tens to icons will decrease the base and increase the height. The question ‘38 is ? 

7s’ is called an equation ’38 = u*7’, using the letter u for the unknown number. An equation is 

easily solved by recounting 38 in 7s, thus providing a natural ‘to opposite side with opposite sign’ 

method as a difference to the traditional ‘do the same to both sides’ method. 

u*7 = 38 = (38/7)*7            so          u = 38/7 = 5 3/7  

Figure 8.  An equation solved by re-counting, the OppositeSide&Sign method. 

Once Counted, Totals Can be Added On-Top or Next-To  

To add on-top by asking ‘3 5s and 2 3s total how many 5s?’, the units must be the same. So, 2 3s 

must be re-counted in 5s as 1B1 5s that added to the 3 5s gives 4B1 5s.  

Using a calculator to predict the result, we use a bracket before counting in 5s: Asking ‘(3*5 + 

2*3)/5’, the answer is ‘4. Some’. Taking away 4 5s leaves 1. So again, we get the result 4B1 5s. 
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(3 * 5 + 2 * 3)/ 5    

(3 * 5 + 2 * 3) – 4 * 5    

4.some 

1 

Figure 9.  A calculator predicts how 3 5s and 2 3s re-counts in 5s as 4.1 5s. 

To add next-to by asking ‘3 5s and 2 3s total how many 8s?’, we add by areas, called integral 

calculus. With blocks we get the answer 2B5 8s. Using a calculator to predict the result, we use a 

bracket before counting in 8s: Asking ‘(3*5 + 2*3)/8’, the answer is ‘2. Some’. Taking away 2 8s 

leaves 5. So again, we get the result 2B5 8s. 

 (3 * 5 + 2 * 3)/ 8    

(4 * 5 + 2 * 3) – 2 * 8    

2.some 

5 

Figure 10.  A calculator predicts how 3 5s and 2 3s re-counts in 8s as 2.5 8s. 

Reversing Adding On-Top and Next-To 

Reversed addition may be called backward calculation or solving equations. Reversing next-to 

addition may be called reversed integration or differentiation. Asking ‘3 5s and how many 3s total 

2B6 8s?’, using blocks gives the answer 2B1 3s. Using a calculator to predict the result, the 

remaining is bracketed before counting in 3s.  

 (2 * 8 + 6 – 3 * 5)/ 3    

(2 * 8 + 6 – 3 * 5) – 2 * 3   

2 

1 

Figure 11.  A calculator predicts how 2.6 8s re-counts in 3 5s and 2.1 3s. 

Adding or integrating two areas next-to each other means multiplying before adding. Reversed 

integration, i.e. differentiation, then means subtracting before dividing, as shown by the gradient 

formula y’ = y/t = (y2 – y1)/t.  

Double-Counting in Two Units Creates Per-Numbers and Proportionality  

Double-counting the same total in two units is called proportionality, which produces ‘per-numbers’ 

as e.g. 2$ per 5kg, or 2$/5kg, or 2/5 $/kg.  

To answer the question ‘T = 6$ = ?kg’ we use the per-number to re-count 6 in 2s, that many times 

we have 5kg: T = 6$ = (6/2)*2$ = (6/2)*5kg = 3*5kg = 15kg. And vice versa: Asking ‘T = 20kg = 

?$’, the answer is T = 20kg = (20/5)*5kg = (20/5)*2$ = 4*2$ = 8$. 

A total can be double-counted in colored blocks of different values, e.g. 1 red per 3 blues. Here, a total 

of 10 blues re-counts as T = 7b & 1r = 4b & 2r = 1b & 3r. Likewise, a total of 3 reds re-counts as T = 

3b & 2r = 6b & 1r = 9b. Placed next to each other, this introduces a primitive coordinate system.  

               
               
               
               
               
               
               
               
               
               

Figure 12.  10 blues left, and 3 reds right, re-counted in combinations. 
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Double-Counting in the Same Unit Creates Fractions as Per-Numbers 

Double-counting a total in the same unit, per-numbers take the form of fractions, e.g. as 3$ per 5$ = 

3/5; or percentages as 3$ per 100$ = 3/100 = 3%.  

Thus, to find 3$ per 5$ of 20$, or 3/5 of 20, we re-count 20 in 5s as 20 = (20/5)*5 = 4*5. Now we 

have two options. Seeing 20 as 4 5s, 4 times we get 3, i.e. 4*3 = 12; and seeing 20 as 5 4s, we get 3 

4s, i.e. 3*4 = 12. 

Likewise, to find what 3$ per 5$ is in percent, i.e. per 100, we re-count 100 in 5s as 100 = 

(100/5)*5 = 20*5. Again, we have two options. Seeing 100 as 20 5s, 20 times we get 3, i.e. 20*3 = 

60; and seeing 100 as 5 20s, we get 3 20s, i.e. 3*20 = 60. So, 3 per 5 gives 60 per 100 or 60%. 

Including or removing units will enlarge or reduce fractions:  

4/6 = 4 3s/6 3s = 4*3/6*3 = 12/18 

4/6 = 2*2/3*2 = 2 2s/3 2s = 2/3 

Adding Per-numbers Roots Integral Calculus before Differential Calculus 

Adding 2kg at 3$/kg and 4kg at 5$/kg, the ‘unit-numbers’ 2 and 4 add directly, but the per-numbers 

3 and 5 must be multiplied first, thus creating areas. So per-numbers and fractions are not numbers, 

but operators needing numbers to become numbers. Per-numbers thus add by the areas under the 

per-number graph, here being ‘piecewise constant’.  

Asking ‘3 seconds at 4m/s increasing steadily to 5m/s’, the per-number is ‘locally constant’. This 

concept is formalized by an ‘epsilon-delta criterion’ seeing three forms of constancy: y is ‘globally 

constant’ c if, for any positive number epsilon, the difference between y and c is less than epsilon. 

And y is ‘piecewise constant’ c if an interval-width delta exists such that, for any positive number 

epsilon, the difference between y and c is less than epsilon in this interval. Interchanging epsilon 

and delta makes y ‘locally constant’ or continuous. Likewise, the change ratio y/x can be 

globally, piecewise or locally constant, in the latter case written as dy/dx = y’.  

With locally constant per-numbers, the area under the graph splits up into countless strips that add 

easily if written as differences since the middle terms then will disappear, leaving just the difference 

between the end- and start-values. Thus, adding areas precedes and motivates differential calculus. 

Using Letters and Functions for Unspecified Numbers and Calculations 

At the language level we can set up a calculation with an unspecified number u, e.g. T = 2 + ? = 2 + 

u. Also, at the meta-language level we can set up an unspecified formula with an unspecified 

number u, written as T = f(u). 

With one unspecified number, a formula becomes an equation as 8 = 2*u; with two, a formula 

becomes a function as T = 2*u; and with three, a formula becomes a surface as T = 2*u + 2*w. 

Although we can write it, T = f(2) is meaningless since 2 is not an unspecified number. When 

specified, a function can be linear or exponential, but it cannot be a number or increase. A total can 

increase, but the way it does so cannot. Mixing language and meta-language creates meaningless 

sentences as ‘the predicate ate the apple’. 
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A general number-formula as e.g. T = a*x^2 + b*x + c is called a polynomial. It shows the four 

different ways to unite, called algebra in Arabic: addition, multiplication, repeated multiplication or 

power, and block-addition or integration. Which is precisely the core of traditional mathematics 

education, teaching addition and multiplication together with their reverse operations subtraction 

and division in primary school; and power and integration together with their reverse operations 

factor-finding (root), factor-counting (logarithm) and per-number-finding (differentiation) in 

secondary school.  

Including the units, we see there can be only four ways to unite numbers: addition and 

multiplication unite changing and constant unit-numbers, and integration and power unite changing 

and constant per-numbers. We might call this beautiful simplicity ‘the algebra square’. 

Operations unite/ 

split Totals in 
Changing Constant 

Unit-numbers 

m, s, kg, $ 

T = a + n 

T – n = a 

T = a*n 

T/n = a 

Per-numbers 

m/s, $/kg, $/100$ = % 

T = ∫a*dn 

dT/dn = a 

T = a^n 

n√T = a     logaT = n 

Figure 13.  The ‘algebra-square’ shows the four ways to unite or split numbers.  

The number-formula contains the formulas for constant change:  

T = b*x (proportional)  

T = b*x + c (linear) 

T = a * x^n (elastic)  

T = a * n^x (exponential)  

T = a*x^2 + b*x + c (accelerated)  

If not constant, numbers change: constant change roots pre-calculus, predictable change roots 

calculus, and unpredictable change roots statistics using confidence intervals to ‘post-dict’ what we 

cannot ‘pre-dict’. 

Combining linear and exponential change by n times depositing a$ to an interest rate r%, we get a 

saving A$ predicted by a simple formula, A/a = R/r, where the total interest rate R is predicted by 

the formula 1+R = (1+r)^n.  

The formula and the proof are both elegant: in a bank, an account contains the amount a/r. A 

second account receives the interest amount from the first account, r*a/r = a, and its own interest 

amount, thus containing a saving A that is the total interest amount R*a/r, which gives A/a = R/r. 

Trigonometry before Geometry 

The tradition introduces plane geometry before coordinate geometry and trigonometry. A difference 

is the opposite order with trigonometry first since halving a block by its diagonal allows the base 

and the height to be re-counted in the diagonal or in each other to create the per-numbers sine, 

cosine, tangent and gradient:  

height = (height/base)*base = tangent*base = gradient*base.  
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This allows a calculator to find pi from a formula:  = n*tan(180/n) for n sufficiently large; and it 

allows to predict an angle A form its base b and height a by reversing the formula tan A = a/b.  

Integrating plane and coordinate geometry allows geometry and algebra to always go hand in hand. 

In this way solving algebraic equations predicts intersection points in geometrical constructions, 

and vice versa.  

Testing a Many-matics Micro-curriculum 

A ‘1 cup and 5 sticks’ micro-curriculum can be designed to help a class stuck in division. The 

intervention begins by bundle-counting 5 sticks in 2s, using the cup for the bundles. The results, 

1B3 2s and 2B1 2s and 3B-1 2s, show that a total can be counted as an inside number of bundles, 

and an outside number of singles; and written in three ways: overload and normal and underload.  

So, to divide 336 by 7, we move 5 bundles outside as 50 singles to re-count 336 with an overload: 

336 = 33B6 = 28B56, which divided by 7 gives 4B8 = 48. With multiplication, singles move inside 

as bundles: 7* 4B8 = 28B56 = 33B6 = 336. ‘Is it that easy?’ is a typical reaction. 

Algebra before Arithmetic may now be Possible 

Introducing algebra before arithmetic was central to the New Math idea and to the work of Davidov 

(Schmittau, 2004). Introducing algebra as generalized arithmetic, the book ‘Early Algebra’ describes 

how ‘a fourth-grade USA class is investigating what happens to the product of a multiplication 

expression when one factor is increased by a certain amount.’ (Kieran et al, 2016, p.17). The 

investigation begins with an example showing that 7*3 = 21, and 7*5 = 35, and 9*3 = 27. 

In a first-grade class working with block-numbers with the bundle as the unit, the answer would be: 

7*3 is 7 3s, and 7*5 is 7 5s, and 9*3 is 9 3s. So 7*5 means that 7 2s is added next-to 7 3s. Re-

counted in tens this will increase the 2B1 tens with 1B4 tens to 3B5 tens. Likewise, 9*3 means that 

2 3s is added on-top of 7 3s. Re-counted in tens this will increase the 2B1 tens with 0B6 tens to 2B7 

tens.  

Adding 2 to both numbers means adding additional 2 2s. Re-counted in tens this will increase the 

2B1 tens with 1B4 tens and 0B6 tens and additional 0B4 tens to 4B5 tens. 

Counting 7 as 9 less 2, and 3 as 5 less 2, will decrease the 9 5s with 2 5s and 2 9s. Only now we 

must add the 2 2s that was removed twice, so (9-2)*(5-2) = 9*5 - 9*2 - 2*5 + 2*2 as shown on a 

western ten by ten abacus as a 9 by 5 block. This roots the algebraic formula (a – b)*(c – d) = a*c – 

a*d – b*c + b*d.  

 

          
          
          
          
          
          
          
          
          

Figure 14.  An abacus shows that 7*3 = (9-2)*(5-2) = 9*5 - 9*2 - 2*5 + 2*2.  
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Later follows a discussion on solving equations (pp. 25-29). In a first-grade class working with 

block-numbers with the bundle as the unit, solving the equation 3x + 9 = 5x + 1, the geometrical 

answer would be: to the left we have a block of 3B9 xs, and to the right we have a block of 5B1 xs. 

Removing 3 bundles and 1 single from both, we get 8 = 2x. Re-counting 8 in 2s we get 2*x = 8 = 

(8/2)*2, so x = 8/2 = 4. 

The algebraic answer would be similar: to the left we have 3 bundles inside and 9 singles outside 

the bundle-cup, and to the right we have 5 bundles inside and 1 single outside. Removing 3 bundles 

from the inside and 1 single from the outside, we get 8 = 2x. Re-counting 8 in 2s we get 2*x = 8 = 

(8/2)*2, so x = 8/2 = 4. 

Using block-numbers instead of line-numbers thus allows introducing algebra before arithmetic 

since with the re-count formula, counting and re-counting and double-counting precede addition. 

Conclusion and Recommendation 

Among the many research articles on counting and arithmetic, only few deal with block-numbers 

(Zybartas and Tarp, 2005). Dienes (2002), the inventor of Multi-base blocks, has similar ideas when 

saying (p. 1):  

The position of the written digits in a written number tells us whether they are counting 

singles or tens or hundreds or higher powers. (..) My contention has been, that in order to 

fully understand how the system works, we have to understand the concept of power. (..) In 

school, when young children learn how to write numbers, they use the base ten exclusively 

and they only use the exponents zero and one (namely denoting units and tens), since for 

some time they do not go beyond two digit numbers. So neither the base nor the exponent 

are varied, and it is a small wonder that children have trouble in understanding the place 

value convention. 

Instead of talking about bases and higher powers, working with icon-bundles and bundles of 

bundles will avoid that ‘neither the base nor the exponent are varied’. By seeing bundles as 

existence and bases as essence, block-numbers differ from Dienes’ multi-base blocks that seem to 

have set-based mathematics as the goal, and blocks as a means.  

Set, however, changed mathematics from a bottom-up Greek ‘Many-matics’ into today’s self-

referring top-down ‘meta-matism’, a mixture of ‘meta-matics’ with concepts defined top-down 

instead of bottom-up, and ‘mathe-matism’ with statements true inside but seldom outside 

classrooms where adding numbers without units as ‘2 + 3 IS 5’ meets counter-examples as 2weeks 

+ 3days is 17 days; in contrast to ‘2*3 = 6’ stating that 2 3s can always be re-counted as 6 1s. 

So, mathematics is not hard by nature but by choice. And yes, a different way exists to its outside 

goal, mastery of Many. Still, it teaches line-numbers as essence to be added without units and 

without being first bundle-counted and re-counted and double-counted. By neglecting the existence 

of block-numbers and re-counting, it misses the golden learning opportunities from introducing 

formulas, proportionality, calculus and equations in early childhood education through its grounded 

alternative, Many-matics.  

Consequently, let us welcome ‘good’ 2-dimensional block-numbers and drop ‘bad’ 1-dimensional 

line-numbers and ‘evil’ fractions (Tarp, 2018b). Let us bundle-count and re-count and double-count 
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before adding on-top and next-to. Let us use full sentences about how to count and (re)unite totals. 

And, let difference-research use sociological imagination to design a diversity of micro-curricula 

(Tarp, 2017) to test if Many-matics makes a difference by fulfilling the ‘Mathematics for All’ 

dream. 

Let existence precede essence in mathematics education also. So, think things. 
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A TWIN CURRICULUM SINCE CONTEMPORARY MATHEMATICS MAY BLOCK 

THE ROAD TO ITS EDUCATIONAL GOAL, MASTERY OF MANY 

Mathematics education research still leaves many issues unsolved after half a century. Since it 

refers primarily to local theory, we may ask if grand theory may be helpful. Here philosophy 

suggests respecting and developing the epistemological mastery of Many children bring to school 

instead of forcing ontological university mathematics upon them. And sociology warns against the 

goal displacement created by seeing contemporary institutionalized mathematics as the goal 

needing eight competences to be learned, instead of aiming at its outside root, mastery of Many, 

needing only two competences, to count and to unite, described and implemented through a guiding 

twin curriculum.  

POOR PISA PERFORMANCE DESPITE FIFTY YEARS OF RESEARCH 

Being highly useful to the outside world, mathematics is a core part of institutionalized education. 

Consequently, research in math education has grown as witnessed by the International Congress on 

Mathematics Education taking place each 4 years since 1969. However, despite increased research 

and funding, the former model country Sweden has seen its PISA result decrease from 2003 to 

significantly below the OECD average in 2012, causing OECD (2015) to write the report 

‘Improving Schools in Sweden’. Likewise, math dislike seems to be widespread in high performing 

countries also. With mathematics and education as social institutions, grand theory may explain this 

‘irrelevance paradox’, the apparent negative correlation between research and performance. 

GRAND THEORY  

Ancient Greece saw two forms of knowledge, ‘sophy’. To the sophists, knowing nature from choice 

would prevent patronization by choice presented as nature. To the philosophers, choice was an 

illusion since the physical is but examples of metaphysical forms only visible to the philosophers 

educated at Plato's Academy. Christianity eagerly took over metaphysical patronage and changed 

the academies into monasteries. The sophist skepticism was revived by Brahe and Newton, insisting 

that knowledge about nature comes from laboratory observations, not from library books (Russell, 

1945).  

Newton’s discovery of a non-metaphysical changing will spurred the Enlightenment period: When 

falling bodies follow their own will, humans can do likewise and replace patronage with 

democracy. Two republics arose, in the United States and in France. The US still has its first 

Republic, France its fifth, since its German-speaking neighbors tried to overthrow the French 

Republic again and again. 

In North America, the sophist warning against hidden patronization lives on in American 

pragmatism and symbolic interactionism; and in Grounded Theory, the method of natural research 

resonating with Piaget’s principles of natural learning. In France, skepticism towards our four 

fundamental institutions, words and sentences and cures and schools, is formulated in the 

poststructural thinking of Derrida, Lyotard, Foucault and Bourdieu warning against institutionalized 

categories, correctness, diagnosed cures, and education; all may hide patronizing choices presented 

as nature (Lyotard, 1984). 
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Within philosophy itself, the Enlightenment created existentialism (Marino, 2004) described by 

Sartre as holding that ‘existence precedes essence’, exemplified by the Heidegger-warning: In a 

sentence, trust the subject, it exists; doubt the predicate, it is essence coming from a verdict or 

gossip. 

The Enlightenment also gave birth to sociology. Here Weber was the first to theorize the increasing 

goal-oriented rationalization that de-enchant the world and create an iron cage if carried to wide. 

Mills (1959) sees imagination as the core of sociology. Bauman (1990) agrees by saying that 

sociological thinking “renders flexible again the world hitherto oppressive in its apparent fixity; it 

shows it as a world which could be different from what it is now” (p. 16). But he also formulates a 

warning (p. 84): “The ideal model of action subjected to rationality as the supreme criterion 

contains an inherent danger of another deviation from that purpose - the danger of so-called goal 

displacement. (..) The survival of the organization, however useless it may have become in the light 

of its original end, becomes the purpose in its own right”. Which may lead to ‘the banality of evil’ 

(Arendt, 1963). 

As to what we say about the world, Foucault (1995) focuses on discourses about humans that, if 

labeled scientific, establish a ‘truth regime’. In the first part of his work, he shows how a discourse 

disciplines itself by only accepting comments to already accepted comments. In the second part he 

shows how a discourse disciplines also its subject by locking humans up in a predicate prison of 

abnormalities from which they can only escape by accepting the diagnose and cure offered by the 

‘pastoral power’ of the truth regime. Foucault thus sees a school as a ‘pris-pital’ mixing the power 

techniques of a prison and a hospital: the ‘pati-mates’ must return to their cell daily and accept the 

diagnose ‘un-educated’ to be cured by, of course, education as defined by the ruling truth regime.  

Mathematics, stable until the arrival of SET 

In ancient Greece, the Pythagoreans chose the word mathematics, meaning knowledge in Greek, as 

a common label for their four knowledge areas: geometry, arithmetic, music and astronomy 

(Freudenthal, 1973), seen by the Greeks as knowledge about Many in space, Many by itself, Many 

in time, and Many in space and time. Together they formed the ‘quadrivium’ recommended by 

Plato as a general curriculum together with ‘trivium’ consisting of grammar, logic and rhetoric. 

With astronomy and music as independent areas, mathematics became a common label for the two 

remaining activities, geometry and algebra, both rooted in the physical fact Many through their 

original meanings, ‘to measure earth’ in Greek and ‘to reunite’ in Arabic. And in Europe, Germanic 

countries taught ‘reckoning’ in primary school and ‘arithmetic’ and ‘geometry’ in the lower 

secondary school until about 50 years ago when they all were replaced by the ‘New Mathematics’. 

Here a wish for exactness and unity created a SET-derived ‘meta-matics’ as a collection of ‘well-

proven’ statements about ‘well-defined’ concepts, defined top-down as examples from abstractions 

instead of bottom-up as abstractions from examples. But Russell showed that the self-referential liar 

paradox ‘this sentence is false’, being false if true and true if false, reappears in the set of sets not 

belonging to itself, where a set belongs only if it does not: If M = A│AA then MM  MM. 

The Zermelo-Fraenkel set-theory avoids self-reference by not distinguishing between sets and 

elements, thus becoming meaningless by not separating abstract concepts from concrete examples.  
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SET thus transformed classical grounded ‘many-matics’ into today’s self-referring ‘meta-matism’, a 

mixture of meta-matics and ‘mathe-matism’ true inside but seldom outside a classroom where 

adding numbers without units as ‘1 + 2 IS 3’ meets counter-examples as e.g. 1week + 2days is 

9days.  

Proportionality illustrates the variety of mastery of Many and of quantitative competence  

Proportionality is rooted in questions as “2kg costs 5$, what does 7kg cost; and what does 12$ 

buy?”  

Europe used the ‘Regula de Tri’ (rule of three) until around 1900: arrange the four numbers with 

alternating units and the unknown at last. Now, from behind, first multiply, the divide. So first we 

ask, Q1: ‘2kg cost 5$, 7kg cost ?$’ to get to the answer (7*5/2)$ = 17.5$. Then we ask, Q2: ‘5$ 

buys 2kg, 12$ buys ?kg’ to get to the answer (12*2)/5$ = 4.8kg.  

Then, two new methods appeared, ‘find the unit’, and cross multiplication in an equation expressing 

like proportions or ratios: 

Q1: 1kg costs 5/2$, so 7kg cost 7*(5/2) = 17.5$. Q2: 1$ buys 2/5kg, so 12$ buys 12*(2/5) = 4.8kg. 

Q1: 2/5 = 7/x, so 2*x = 7*5, x = (7*5)/2 = 17.5. Q2: 2/5 = x/12, so 5*x = 12*2, x = (12*2)/5 = 4.8. 

SET chose modeling with linear functions to show the relevance of abstract algebra’s group theory: 

Let us define a linear function f(x) = c*x from the set of kg-numbers to the set of $-numbers, having 

as domain DM = {xR I x>0}. Knowing that f(2) = 5, we set up the equation f(2) = c*2 = 5 to be 

solved by multiplying with the inverse element to 2 on both sides and applying the associative law: 

c*2 = 5, (c*2)*½ = 5*½, c*(2*½) = 5/2, c*1 = 5/2, c = 5/2. With f(x) = 5/2*x, the inverse function 

is f-1(x) = 2/5*x. So with 7kg, f(7) = 5/2*7 = 17.5$; an with 12$, f-1(12) = 2/5*12 = 4.8kg. 

In the future, we simply ‘re-count’ in the ‘per-number’ 2kg/5$ coming from ‘double-counting’ the 

total T. Q1: T = 7kg = (7/2)*2kg = (7/2)*5$ = 17.5$; Q2: T = 12$ = (12/5)*5$ = (12/5)*2kg = 

4.8kg. 

Grand theory looks at mathematics education 

Philosophically, we can ask if Many should be seen ontologically, what it is in itself; or 

epistemologically, how we perceive and verbalize it. University mathematics holds that Many 

should be treated as cardinality that is linear by its ability to always absorb one more. However, in 

human number-language, Many is a union of blocks coming from counting singles, bundles, 

bundles of bundles etc., T = 345 = 3*BB+4*B+5*1, resonating with what children bring to school, 

e.g. T = 2 5s. 

Likewise, we can ask: in a sentence what is more important, that subject or what we say about it? 

University mathematics holds that both are important if well-defined and well-proven; and both 

should be mediated according to Vygotskian psychology. Existentialism holds that existence 

precedes essence, and Heidegger even warns against predicates as possible gossip. Consequently, 

learning should come from openly meeting the subject, Many, according to Piagetian psychology. 

Sociologically, a Weberian viewpoint would ask if SET is a rationalization of Many gone too far 

leaving Many de-enchanted and the learners in an iron cage. A Baumanian viewpoint would suggest 

that, by monopolizing the road to mastery of Many, contemporary university mathematics has 
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created a goal displacement. Institutions are means, not goals. As an institution, mathematics is a 

means, so the word ‘mathematics’ must go from goal descriptions. Thus, to cure we must be sure 

the diagnose is not self-referring. Seeing education as a pris-pital, a Foucaultian viewpoint, would 

ask, first which structure to choose, European line-organization forcing a return to the same cell 

after each hour, day and month for several years; or the North American block-organization 

changing cell each hour, and changing the daily schedule twice a year? Next, as prisoners of a ‘the 

goal of math education is to learn math’ discourse and truth regime, how can we look for different 

means to the outside goal, mastery of Many, e.g. by examining and developing the existing mastery 

children bring to school?  

Meeting Many, children bundle in block-numbers to count and share 

How to master Many can be learned from preschool children. Asked “How old next time?”, a 3year 

old will say “Four” and show 4 fingers; but will react strongly to 4 fingers held together 2 by 2, 

‘That is not four, that is two twos’, thus describing what exists, and with units: bundles of 2s, and 2 

of them. 

Children also use block-numbers when talking about Lego bricks as ‘2 3s’ or ‘3 4s’. When asked 

“How many 3s when united?” they typically say ‘5 3s and 3 extra’; and when asked “How many 

4s?” they may say ‘5 4s less 2’; and, placing them next-to each other, they typically say ‘2 7s and 3 

extra’.  

Children have fun recounting 7 sticks in 2s in various ways, as 1 2s &5, 2 2s &3, 3 2s &1, 4 2s less 

1, 1 4s &3, etc. And children don’t mind writing a total of 7 using ‘bundle-writing’ as T = 7 = 1B5 

= 2B3 = 3B1 = 4B1; or even as 1BB3 or 1BB1B1. Also, children love to count in 3s, 4s, and in 

hands.  

Sharing 9 cakes, 4 children take one by turn saying they take 1 of each 4. Taking away 4s roots 

division as counting in 4s; and with 1 left they often say “let’s count it as 4”. Thus 4 preschool 

children typically share by taking away 4s from 9, and by taking away 1 per 4, and by taking 1 of 4 

parts. And they smile when seeing that entering ‘9/4’ allows a calculator to predict the sharing 

result as 2 1/4; and when seeing that entering ‘2*5/3’ will predict the result of sharing 2 5s between 

3 children.  

Children thus master sharing, taking parts and splitting into parts before division and counting- and 

splitting-fractions is taught; which they may like to learn before being forced to add without units.  

So why not develop instead of rejecting the core mastery of Many that children bring to school?  

A typical contemporary mathematics curriculum 

Typically, the core of a curriculum is how to operate on specified and unspecified numbers. Digits 

are given directly as symbols without letting children discover them as icons with as many strokes 

or sticks as they represent. Numbers are given as digits respecting a place value system without 

letting children discover the thrill of bundling, counting both singles and bundles and bundles of 

bundles. Seldom 0 is included as 01 and 02 in the counting sequence to show the importance of 

bundling. Never children are told that eleven and twelve comes from the Vikings counting ‘(ten 

and) 1 left’, ‘(ten and) 2 left’. Never children are asked to use full number-language sentences, T = 

2 5s, including both a subject, a verb and a predicate with a unit. Never children are asked to 
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describe numbers after ten as 1.4 tens with a decimal point and including the unit. Renaming 17 as 

2.-3 tens and 24 as 1B14 tens is not allowed. Adding without units always precedes both bundling 

iconized by division, stacking iconized by multiplication, and removing stacks to look for 

unbundled singles iconized by subtraction. In short, children never experience the enchantment of 

counting, recounting and double-counting Many before adding. So, to re-enchant Many will be an 

overall goal of a twin curriculum in mastery of Many through developing the children’s existing 

mastery and quantitative competence. 

A QUESTION GUIDED COUNTING CURRICULUM 

The question guided re-enchantment curriculum in counting could be named ‘Mastering Many by 

counting, recounting and double-counting’. The design is inspired by Tarp (2018). It accepts that 

while eight competencies might be needed to learn university mathematics (Niss, 2003), only two 

are needed to master Many (Tarp, 2002), counting and uniting, motivating a twin curriculum. The 

corresponding pre-service or in-service teacher education can be found at the 

MATHeCADEMY.net. Remedial curricula for classes stuck in contemporary mathematics can be 

found in Tarp (2017). 

Q01, icon-making: “The digit 5 seems to be an icon with five sticks. Does this apply to all digits?” 

Here the learning opportunity is that we can change many ones to one icon with as many sticks or 

strokes as it represents if written in a less sloppy way. Follow-up activities could be rearranging 

four dolls as one 4-icon, five cars as one 5-icon, etc.; followed by rearranging sticks on a table or on 

a paper; and by using a folding ruler to construct the ten digits as icons.  

Q02, counting sequences: “How to count fingers?” Here the learning opportunity is that five fingers 

can also be counted “01, 02, 03, 04, Hand” to include the bundle; and ten fingers as “01, 02, Hand 

less2, Hand-1, Hand, Hand&1, H&2, 2H-2, 2H-1, 2H”. Follow-up activities could be counting 

things. 

Q03, icon-counting: “How to count fingers by bundling?” Here the learning opportunity is that five 

fingers can be bundle-counted in pairs or triplets allowing both an overload and an underload; and 

reported in a number-language sentence with subject, verb and predicate: T = 5 = 1Bundle3 2s = 

2B1 2s = 3B-1 2s = 1BB1 2s, called an ‘inside bundle-number’ describing the ‘outside block-

number’. A western abacus shows this in ‘outside geometry space-mode’ with the 2 2s on the 

second and third bar and 1 on the first bar; or in ‘inside algebra time-mode’ with 2 on the second 

bar and 1 on the first bar. Turning over a two- or three-dimensional block or splitting it in two 

shows its commutativity, associativity and distributivity: T = 2*3 = 3*2; T = 2*(3*4) = (2*3)*4; T 

= (2+3)*4 = 2*4 + 3*4. 

Q04, calculator-prediction: “How can a calculator predict a counting result?” Here the learning 

opportunity is to see the division sign as an icon for a broom wiping away bundles: 5/2 means ‘from 

5, wipe away bundles of 2s’. The calculator says ‘2.some’, thus predicting it can be done 2 times. 

Now the multiplication sign iconizes a lift stacking the bundles into a block. Finally, the subtraction 

sign iconizes the trace left when dragging away the block to look for unbundled singles. By 

showing ‘5-2*2 = 1’ the calculator indirectly predicts that a total of 5 can be recounted as 2B1 2s. 

An additional learning opportunity is to write and use the ‘recount-formula’ T = (T/B)*B saying 

“From T, T/B times B can be taken away.” This proportionality formula occurs all over mathematics 
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and science. Follow-up activities could be counting cents: 7 2s is how many fives and tens? 8 5s is 

how many tens? 

Q05, unbundled as decimals, fractions or negative numbers: “Where to put the unbundled singles?” 

Here the learning opportunity is to see that with blocks, the unbundled occur in three ways. Next-to 

the block as a block of its own, written as T = 7 = 2.1 3s, where a decimal point separates the 

bundles from the singles. Or on-top as a part of the bundle, written as T = 7 = 2 1/3 3s = 3.-2 3s 

counting the singles in 3s, or counting what is needed for an extra bundle. Counting in tens, the 

outside block 4 tens & 7 can be described inside as T = 4.7 tens = 4 7/10 tens = 5.-3 tens, or 47 if 

leaving out the unit. 

Q06, prime or foldable units: “Which blocks can be folded?” Here the learning opportunity is to 

examine the stability of a block. The block T = 2 4s = 2*4 has 4 as the unit. Turning over gives T = 

4*2, now with 2 as the unit. Here 4 can be folded in another unit as 2 2s, whereas 2 cannot be 

folded (1 is not a real unit since a bundle of bundles stays as 1). Thus, we call 2 a ‘prime unit’ and 4 

a ‘foldable unit’, 4 = 2 2s. So, a block of 3 2s cannot be folded, whereas a block of 3 4s can: T = 3 

4s = 3 * (2*2) = (3*2) * 2. A number is called even if it can be written with 2 as the unit, else odd.  

Q07, finding units: “What are possible units in T = 12?”. Here the learning opportunity is that units 

come from factorizing in prime units, T = 12 = 2*2*3. Follow-up activities could be other 

examples. 

Q08, recounting in another unit: “How to change a unit?” Here the learning opportunity is to 

observe how the recount-formula changes the unit. Asking e.g. T = 3 4s = ? 5s, the recount-formula 

will say T = 3 4s = (3*4/5) 5s. Entering 3*4/5, the answer ‘2.some’ shows that a stack of 2 5s can 

be taken away. Entering 3*4 – 2*5, the answer ‘2’ shows that 3 4s can be recounted in 5s as 2B2 5s 

or 2.2 5s.  

Q09, recounting from tens to icons: “How to change unit from tens to icons?” Here the learning 

opportunity is that asking ‘T = 2.4 tens = 24 = ? 8s’ can be formulated as an equation using the 

letter u for the unknown number, u*8 = 24. This is easily solved by recounting 24 in 8s as 24 = 

(24/8)*8 so that the unknown number is u = 24/8 attained by moving 8 to the opposite side with the 

opposite sign. Follow-up activities could be other examples of recounting from tens to icons. 

Q10, recounting from icons to tens: “How to change unit from icons to tens?” Here the learning 

opportunity is that if asking ‘T = 3 7s = ? tens’, the recount-formula cannot be used since the 

calculator has no ten-button. However, it is programmed to give the answer directly by using 

multiplication alone: T = 3 7s = 3*7 = 21 = 2.1 tens, only it leaves out the unit and misplaces the 

decimal point. An additional learning opportunity uses ‘less-numbers’, geometrically on an abacus, 

or algebraically with brackets: T = 3*7 = 3 * (ten less 3) = 3 * ten less 3*3 = 3ten less 9 = 3ten less 

(ten less1) = 2ten less less 1 = 2ten & 1 = 21. Follow-up activities could be other examples of 

recounting from icons to tens. 

Q11, double-counting in two units: “How to double-count in two different units?” Here the learning 

opportunity is to observe how double-counting in two physical units creates ‘per-numbers’ as e.g. 

2$ per 3kg, or 2$/3kg. To answer questions we just recount in the per-number: Asking ‘6$ = ?kg’ 

we recount 6 in 2s: T = 6$ = (6/2)*2$ = (6/2)*3kg = 9kg. And vice versa, asking ‘?$ = 12kg’, the 

answer is T = 12kg = (12/3)*3kg = (12/3)*2$ = 8$. Follow-up activities could be numerous other 
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examples of double-counting in two different units since per-numbers and proportionality are core 

concepts. 

Q12, double-counting in the same unit: “How to double-count in the same unit?” Here the learning 

opportunity is that when double-counted in the same unit, per-numbers take the form of fractions, 

3$ per 5$ = 3/5; or percentages, 3 per hundred = 3/100 = 3%. Thus, to find a fraction or a 

percentage of a total, again we just recount in the per-number. Also, we observe that per-numbers 

and fractions are not numbers, but operators needing a number to become a number. Follow-up 

activities could be other examples of double-counting in the same unit since fractions and 

percentages are core concepts. 

Q13, recounting the sides in a block. “How to recount the sides of a block halved by its diagonal?” 

Here, in a block with base b, height a, and diagonal c, mutual recounting creates the trigonometric 

per-numbers: a = (a/c)*c = sinA*c; b = (b/c)*c = cosA*c; a = (a/b)*b = tanA*b. Thus, rotating a line 

can be described by a per-number a/b, or as tanA per 1, allowing angles to be found from per-

numbers. Follow-up activities could be other blocks e.g. from a folding ruler. 

Q14, double-counting in STEM (Science, Technology, Engineering, Math) multiplication formulas 

with per-numbers coming from double-counting. Examples: kg = (kg/cubic-meter)*cubic-meter = 

density*cubic-meter; force = (force/square-meter) * square-meter = pressure * square-meter; meter 

= (meter/sec)*sec = velocity*sec; energy = (energy/sec)*sec = Watt*sec; energy = (energy/kg) * kg 

= heat * kg; gram = (gram/mole) * mole = molar mass * mole;  momentum = ( momentum/sec) 

* sec = force * sec;     energy = ( energy/ meter) * meter = force * meter = work; energy/sec = 

(energy/charge)*(charge/sec) or Watt = Volt*Amp; dollar = (dollar/hour)*hour = wage*hour. 

Q15, navigating. “Avoid the rocks on a squared paper”. Four rocks are placed on a squared paper. A 

journey begins in the midpoint. Two dices tell the horizontal and vertical change, where odd 

numbers are negative. How many throws before hitting a rock? Predict and measure the angles on 

the journey. 

A QUESTION GUIDED UNITING CURRICULUM 

The question guided re-enchantment curriculum in uniting could be named ‘Mastering Many by 

uniting and splitting constant and changing unit-numbers and per-numbers’. 

A general bundle-formula T = a*x^2 + b*x + c is called a polynomial. It shows the four ways to 

unite: addition, multiplication, repeated multiplication or power, and block-addition or integration. 

The tradition teaches addition and multiplication together with their reverse operations subtraction 

and division in primary school; and power and integration together with their reverse operations 

factor-finding (root), factor-counting (logarithm) and per-number-finding (differentiation) in 

secondary school. The formula also includes the formulas for constant change: proportional, linear, 

exponential, power and accelerated. Including the units, we see there can be only four ways to unite 

numbers: addition and multiplication unite changing and constant unit-numbers, and integration and 

power unite changing and constant per-numbers. We might call this beautiful simplicity ‘the 

algebra square’. 

Q21, next-to addition: “With T1 = 2 3s and T2 = 4 5s, what is T1+T2 when added next-to as 8s?” 

Here the learning opportunity is that next-to addition geometrically means adding by areas, so 
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multiplication precedes addition. Algebraically, the recount-formula predicts the result. Next-to 

addition is called integral calculus. Follow-up activities could be other examples of next-to addition. 

Q22, reversed next-to addition: “If T1 = 2 3s and T2 add next-to as T = 4 7s, what is T2?” Here the 

learning opportunity is that when finding the answer by removing the initial block and recounting 

the rest in 3s, subtraction precedes division, which is natural as reversed integration, also called 

differential calculus. Follow-up activities could be other examples of reversed next-to addition. 

Q23, on-top addition: “With T1 = 2 3s and T2 = 4 5s, what is T1+T2 when added on-top as 3s; and 

as 5s?” Here the learning opportunity is that on-top addition means changing units by using the 

recount-formula. Thus, on-top addition may apply proportionality; an overload is removed by 

recounting in the same unit. Follow-up activities could be other examples of on-top addition. 

Q24, reversed on-top addition: “If T1 = 2 3s and T2 as some 5s add to T = 4 5s, what is T2?” Here 

the learning opportunity is that when finding the answer by removing the initial block and 

recounting the rest in 5s, subtraction precedes division, again is called differential calculus. An 

underload is removed by recounting. Follow-up activities could be other examples of reversed on-

top addition. 

Q25, adding tens: “With T1 = 23 and T2 = 48, what is T1+T2 when added as tens?” Again, 

recounting removes an overload: T1+T2 = 23 + 48 = 2B3 + 4B8 = 6B11 = 7B1 = 71; or T = 236 + 

487 = 2BB3B6 + 4BB8B7 = 6BB11B13 = 6BB12B3 = 7BB2B3 = 723.  

Q26, subtracting tens: “If T1 = 23 and T2 add to T = 71, what is T2?” Again, recounting removes an 

underload: T2 = 71 – 23 = 7B1 – 2B3 = 5B-2 = 4B8 = 48; or T2 = 956 – 487 = 9BB5B6 – 4BB8B7 = 

5BB-3B-1 = 4BB7B-1 = 4BB6B9 = 469. Since T = 19 = 2.-1 tens, T2 = 19 -(-1) = 2.-1 tens take 

away -1 = 2 tens = 20 = 19+1, showing that -(-1) = +1.  

Q27, multiplying tens: “What is 7 43s recounted in tens?” Here the learning opportunity is that also 

multiplication may create overloads: T = 7*43 = 7*4B3 = 28B21 = 30B1 = 301; or 27*43 = 

2B7*4B3 =8BB+6B+28B+21 =8BB34B21 =8BB36B1 = 11BB6B1 = 1161, solved geometrically in a 

2x2 block.  

Q28, dividing tens: “What is 348 recounted in 6s?” Here the learning opportunity is that recounting 

a total with overload often eases division: T = 348 /6 = 3BB4B8 /6 = 34B8 /6 = 30B48 /6 = 5B8 = 

58.  

Q29, adding per-numbers: “2kg of 3$/kg + 4kg of 5$/kg = 6kg of what?” Here the learning 

opportunity is that the unit-numbers 2 and 4 add directly whereas the per-numbers 3 and 5 add by 

areas since they must first transform into unit-number by multiplication, creating the areas. Here, 

the per-numbers are piecewise constant. Asking 2 seconds of 4m/s increasing constantly to 5m/s 

leads to finding the area in a ‘locally constant’ (continuous) situation defining constancy by epsilon 

and delta. 

Q30, subtracting per-numbers: “2kg of 3$/kg + 4kg of what = 6kg of 5$/kg?” Here the learning 

opportunity is that unit-numbers 6 and 2 subtract directly whereas the per-numbers 5 and 3 subtract 

by areas since they must first transform into unit-number by multiplication, creating the areas. In a 

‘locally constant’ situation, subtracting per-numbers is called differential calculus.  
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Q31, finding common units: “Only add with like units, so how to add T = 4ab^2 + 6abc?”. Here 

units come from factorizing:  

T = 2*2*a*b*b + 2*3*a*b*c = 2*b*(2*a*b) + 3*c*(2*a*b) = 2b+3c 2abs.  

CONCLUSION 

A math education curriculum must make a choice. Shall it teach the ontology or the epistemology 

of Many? Shall it mediate the contemporary university discourse where the set-concept has 

transformed classical bottom-up ‘many-matics’ into a self-referring top-down ‘meta-matism’; or 

shall it develop the mastery of Many already possessed by children? Shall it teach about numbers or 

how to number? To allow choosing between a mediating and a developing curriculum, we need an 

alternative to the present curriculum, unsuccessfully trying to mediate contemporary university 

mathematics. So, Luther has a point arguing that reaching a goal is not always helped by 

institutional patronization.  Grand theory thus has an answer to the ‘irrelevance paradox’ of 

mathematics education research: Accepting the child’s own epistemology will avoid a goal 

displacement where a litany of self-referring university mathematics blocks the road to its outside 

educational goal, mastery of Many. 
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A NEW CURRICULUM - BUT FOR WHICH OF THE 3X2 KINDS OF 

MATHEMATICS EDUCATION  

An essay on observations and reflections at the ICMI study 24 curriculum conference 

As part of institutionalized education, mathematics needs a curriculum describing goals and means. 

There are however three kinds of mathematics: pre-, present and post-‘setcentric’ mathematics; 

and there are two kinds of education: multi-year lines and half-year blocks. Thus, there are six 

kinds of mathematics education to choose from before deciding on a specific curriculum; and if 

changing, shall the curriculum stay within the actual kind or change to a different kind? The 

absence of federal states from the conference suggests that curricula should change from national 

multi-year macro-curricula to local half-year micro-curricula; and maybe change to post-setcentric 

mathematics. 

COHERENCE AND RELEVANCE IN THE SCHOOL MATHEMATICS CURRICULUM  

The International Commission on Mathematical Instruction, ICMI, has named its 24th study 

“School mathematics Curriculum Reforms: Challenges, Changes and Opportunities”. Its discussion 

document has 5 themes among which theme B, “Analysing school mathematics curriculum for 

coherence and relevance” says that “All mathematics curricula set out the goals expected to be 

achieved in learning through the teaching of mathematics; and embed particular values, which may 

be explicit or implicit.” 

So, to analyze we use the verb ‘cohere’ and the predicate ‘relevant’ when asking: “to what does this 

curriculum cohere and to what is it relevant?” As to the meaning of the words ‘cohere’ and 

‘relevant’ we may ask dictionaries. 

The Oxford Dictionaries (en.oxforddictionaries.com) writes that ‘to cohere’ means ‘to form a 

unified whole’ with its origin coming from Latin ‘cohaerere’, from co- ‘together’ + haerere ‘to 

stick’; and that ‘relevant’ means being ‘closely connected or appropriate to what is being done or 

considered.’ 

We see, that where ‘cohere’ relates to states, ‘relevant’ relates to changes or processes taking place. 

The Merriam-Webster dictionary (merriam-webster.com) seems to agree upon these meanings. It 

writes that ‘to cohere’ means ‘to hold together firmly as parts of the same mass’. As to synonyms 

for cohere, it lists: ‘accord, agree, answer, check, chord, coincide, comport, conform, consist, 

correspond, dovetail, fit, go, harmonize, jibe, rhyme (also rime), sort, square, tally.’ And as to 

antonyms, it lists: ‘differ (from), disagree (with).’ 

In the same dictionary, the word ‘relevant’ means ‘having significant and demonstrable bearing on 

the matter at hand’. As to synonyms for relevant, it lists: ‘applicable, apposite, apropos, germane, 

material, pertinent, pointed, relative.’ And as to antonyms, it lists: ‘extraneous, immaterial, 

impertinent, inapplicable, inapposite, irrelative, irrelevant, pointless.’ 

If we accept the verb ‘apply’ as having a meaning close to the predicate ‘relevant’, we can rephrase 

the above analysis question using verbs only: “to what does this curriculum cohere and apply?” 

Seeing education metaphorically as bridging an individual start level for skills and knowledge to a 

common end level described by goals and values, we may now give a first definition of an ideal 
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curriculum: “To apply to a learning process as relevant and useable, a curriculum coheres to the 

start and end levels for skills and knowledge.” 

This definition involves obvious choices, and surprising choices also if actualizing the ancient 

Greek sophist warning against choice masked as nature. The five main curriculum choices are:  

• How to make the bridge cohere with the individual start levels in a class?  

• How to make the end level cohere to goals and values expressed by the society?  

• How to make the end level cohere to goals and values expressed by the learners?  

• How to make the bridge cohere to previous and following bridges? 

• How to make the bridge (more) passable?  

Then specific choices for mathematics education follow these general choices. 

GOALS AND VALUES EXPRESSED BY THE SOCIETY  

In her plenary address about the ‘OECD 2030 Learning Framework’, Taguma shared a vision:  

The members of the OECD Education 2030 Working Group are committed to helping every learner 

develop as a whole person, fulfil his or her potential and help shape a shared future built on the well-

being of individuals, communities and the planet. (..) And in an era characterised by a new explosion of 

scientific knowledge and a growing array of complex societal problems, it is appropriate that curricula 

should continue to evolve, perhaps in radical ways (p. 10).  

Talking about learner agency, Taguma said: 

Future-ready students need to exercise agency, in their own education and throughout life. (..) To help 

enable agency, educators must not only recognise learners’ individuality, (..) Two factors, in particular, 

help learners enable agency. The first is a personalised learning environment that supports and motivates 

each student to nurture his or her passions, make connections between different learning experiences and 

opportunities, and design their own learning projects and processes in collaboration with others. The 

second is building a solid foundation: literacy and numeracy remain crucial. (p. 11) 

By emphasizing learner’s individual potentials, personalised learning environment and own 

learning projects and processes, Taguma seems to indicate that flexible half-year micro-curricula 

may cohere better with learners’ future needs than rigid multi-year macro-curricula. As to specifics, 

numeracy is mentioned as one of the two parts of a solid foundation helping learners enable agency. 

DIFFERENT KINDS OF NUMERACY 

Numeracy, however, is not that well defined. Oxford Dictionaries and Merriam-Webster agree on 

saying ‘ability to understand and work with numbers’; whereas the private organization National 

Numeracy (nationalnumeracy.org.uk) says ‘By numeracy we mean the ability to use mathematics in 

everyday life’.  

The wish to show usage was also part of the Kilpatrick address, describing mathematics as bipolar: 

I want to stress that bipolarity because I think that’s an important quality of the school curriculum and 

every teacher and every country has to deal with: how much attention do we give to the purer side of 

mathematics. The New Math thought that it should be entire but that didn’t work really as well as people 

thought. So how much attention do we give to the pure part of mathematics and how much to the 

applications and how much do we engage together. Because it turns out if the applications are well-
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chosen and can be understood by the children then that helps them move toward the purer parts of the 

field. (p. 20) 

After discussing some problems caused by applications in the curriculum, Kilpatrick concludes:  

If we stick with pure mathematics, with no application, what students cannot see, “when will I ever use 

this?”, it’s not surprising that they don’t go onto take more mathematics. So, I think for self-preservation, 

mathematicians and mathematics educators should work on the question of: how do we orchestrate the 

curriculum so that applications play a good role? There is even is even a problem with the word 

applications, because it implies first you do the mathematics, then you apply it. And actually, it can go the 

other way. (p. 22)  

So, discussing what came first, the hen or the egg, applications or mathematics, makes it 

problematic to define numeracy as the ability to apply mathematics since it gives mathematics a 

primacy and a monopoly as a prerequisite for numeracy. At the plenary afterwards discussion, I 

suggested using the word ‘re-rooting’ instead of ‘applying’ to indicate that from the beginning, 

mathematics was rooted in the outside world as shown by the original meanings of geometry and 

algebra: ‘to measure earth’ in Greek and ‘to reunite’ in Arabic.  

MATHEMATICS THROUHG HISTORY 

In ancient Greece, the Pythagoreans chose the word mathematics, meaning knowledge in Greek, as 

a common label for their four knowledge areas: geometry, arithmetic, music and astronomy, seen 

by the Greeks as knowledge about Many in space, Many by itself, Many in time, and Many in space 

and time. Together they formed the ‘quadrivium’ recommended by Plato as a general curriculum 

together with ‘trivium’ consisting of grammar, logic and rhetoric. 

With astronomy and music as independent areas, mathematics became a common label for the two 

remaining activities, geometry and algebra. And in Europe, Germanic countries taught ‘reckoning’ 

in primary school and ‘arithmetic’ and ‘geometry’ in the lower secondary school until about 50 

years ago when they all were replaced by the ‘New Mathematics’. 

Here a wish for exactness and unity created a ‘setcentric’ ‘meta-matics’ as a collection of ‘well-

proven’ statements about ‘well-defined’ concepts, defined top-down as examples from abstractions 

instead of bottom-up as abstractions from examples. But Russell showed that the self-referential liar 

paradox ‘this sentence is false’, being false if true and true if false, reappears in the set of sets not 

belonging to itself, where a set belongs only if it does not: If M = A│AA then MM  MM. 

The Zermelo-Fraenkel set-theory avoids self-reference by not distinguishing between sets and 

elements, thus becoming meaningless by not separating abstract concepts from concrete examples.  

Setcentrism thus changed classical grounded ‘many-matics’ into a self-referring ‘meta-matism’, a 

mixture of meta-matics and ‘mathe-matism’ true inside but seldom outside a classroom where 

adding numbers without units as ‘1 + 2 IS 3’ meets counter-examples as e.g. 1week + 2days is 

9days.  

The introduction of the setcentric New Mathematics created different reactions. Inside the United 

States it was quickly abandoned with a ‘back-to-basics’ movement. Outside it was implemented at 

teacher education, and in schools where it gradually softened. However, it never retook its original 

form or name, despite, in contrast to ‘mathematics’, ‘reckon’ is an action-word better suited to the 

general aim of education, to teach humans to master the outside world through appropriate actions. 
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DIFFERENT KINDS OF MATHEMATICS  

So, a curriculum must choose between a pre-, a present, and a post-setcentric mathematics as 

illustrated by an example from McCallum’s plenary talk. After noting that “a particularly knotty 

area in mathematics curriculum is the progression from fractions to ratios to proportional 

relationships” (p. 4), McCallum asked the audience: “What is the difference between 5/3 and 5÷3”.  

Pre-setcentric mathematics will say that 5/3 is a number on the number-line reached by taking 5 

steps of the length coming from dividing the unit in 3 parts; and that 5÷3 means 5 items shared 

between 3. 

Present setcentric mathematics will say that 5/3 is a rational number defined as an equivalence class 

in the product set of integers, created by the equivalence relation (a,b) eq. (c,d) if cross-

multiplication holds, axd = bxc; and, with 1/3 as the inverse element to 3 under multiplication, 5÷3 

should be written as 5x1/3, i.e. the as the solution to the equation 3xu = 5, found by applying and 

thus legitimizing abstract algebra and group theory; thus finally saying goodbye to the Renaissance 

use of a vertical line to separate addends from subtrahends, and a horizontal line to separate 

multipliers from divisors. 

Post-setcentric mathematics (Tarp, 2018) sees setcentric mathematics as meta-matism hiding the 

original Greek meaning og mathematics as a science about Many. In this ‘Many-math’, 5/3 is a per-

number coming from double-counting in different units (5$/3kg), becoming a fraction with like 

units (5$/3$ = 5/3). Here per-numbers and fractions are not numbers but operators needing a 

number to become a number (5/3 of 3 is 5, 5/3 of 6 is 10); and 5÷3 means 5 counted in 3s occurring 

in the ‘recount-formula’ recounting a total T in bundles of 3s as T = (T/3)x3, saying ‘from T, T/3 

times, 3 can be taken away’. This gives flexible numbers: T = 5 = 1B2 3s = 1.2 3s = 1 2/3 3s = 2B-1 

3s = 2.-1 3s, introduced in grade one where bundle-counting and re-counting in another unit 

precedes adding, and where recounting from tens to icons, T = 2.4 tens = ? 6s, leads to the equation 

T = ux6 = 24 = (24/6)x6 solved by recounting. In post-setcentric mathematics, per-numbers, 

fractions, ratios and proportionality melt together since double-counting in two units gives per-

numbers as ratios, becoming fractions with like units. And here proportionality means changing 

units using the recount-formula to recount in the per-number: With 5$/3kg, “how much for 20$?” is 

found by re-counting 20 in 5s: T = 20$ = (20/5)x5$ = (20/5)x3kg = 12 kg. Likewise if asking “how 

much for 15 kg?” 

DIFFERENT KINDS OF EDUCATION 

As to education, from secondary school there is a choice between multi-year lines and half-year 

blocks. At the discussion after the Kilpatrick plenary session I made a comment about these two 

educational systems, which mas a lady from the United States say I was misinforming since in the 

states Calculus required a full year block. Together with other comments in the break, this made me 

realize that internationally there is little awareness of these two different kinds of educational 

systems. So here is another example of what the Greek sophists warned against, choice masked as 

nature. 

Typically, unitary states have one multi-year curriculum for primary and lower secondary school, 

followed by parallel multi-year curricula for upper secondary and tertiary education. Whereas, by 
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definition, federal states have parallel curricula, or even half-year curricula from secondary school 

as in the United States.  

At the conference, the almost total absence of federal states as Germany, Canada, the United States 

and Russia seems to indicate that the problems reside with multi-year national curricula, becoming 

rigid traditions difficult to change. While federal competition or half-year blocks creates flexibility 

through an opportunity to try out different curricula. 

Moreover, as a social institution involving individual constraint, education calls for sociological 

perspectives. Seeing the Enlightenment Century as rooting education, it is interesting to study its 

forms in its two Enlightenment republics, the North American from 1776 and the French from 

1789. In North America, education enlightens children about their outside world, and enlighten 

teenagers about their inside individual talent, uncovered and developed through self-chosen half-

year blocks with teachers teaching one subject only in their own classrooms.  

To protect its republic against its German speaking neighbors, France created elite schools, 

criticized today for exerting hidden patronization. Bourdieu thus calls education ‘symbolic 

violence’, and Foucault points out that a school is really a ‘pris-pital’ mixing power techniques 

from a prison and a hospital, thus raising two ethical issues: On which ethical ground do we force 

children and teenagers to return to the same room, hour after hour, day after day, week after week, 

month after month for several years? On which ethical ground do we force children and teenagers 

to be cured from self-referring diagnoses as e.g., the purpose of mathematics education is to cure 

mathematics ignorance? Issues, the first Enlightenment republic avoids by offering teenagers self-

chosen half-year blocks; and by teaching, not mathematics, but algebra and geometry referring to 

the outside world by their original meanings. 

DIFFERENT KINDS OF COMPETENCES  

As to competences, new to many curricula, there are at least three alternatives to choose among. 

The European Union recommends two basic competences, acquiring and applying, when saying 

that “Mathematical competence is the ability to develop and apply mathematical thinking in order 

to solve a range of problems in everyday situations. Building on a sound mastery of numeracy, the 

emphasis is on process and activity, as well as knowledge.” 

At the conference two alternatives notions of competences were presented. In his plenary address, 

Niss recommended a matrix with 8 competences per concept (p. 73). In his paper, Tarp (pp. 317-

324) acknowledged that 8 competences may be needed if the goal of mathematics education is to 

learn present setcentric university mathematics; but if the goal is to learn to master Many with post-

setcentric mathematics, then only two competences are needed: counting and adding, rooting a twin 

curriculum teaching counting, recounting in different units and double-counting before adding. 

MAKING THE LEARNING ROAD MORE PASSABLE  

Once a curriculum is chosen, the next question is to make its bridge between the start and end levels 

for skills and knowledge more passable. Here didactics and pedagogy come in; didactics as the 

captain choosing the way from the start to the end, typically presented as a textbook leaving it to 

pedagogy, the lieutenants, to take the learners through the different stages.  
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The didactical choices must answer general questions from grand theory. Thus, philosophy will ask: 

shall the curriculum follow the existentialist recommendation, that existence precedes essence? And 

psychology will ask: shall the curriculum follow Vygotsky mediating institutionalized essence, or 

Piaget arranging learning meetings with what exists in the outside world? And sociology will ask: 

on which ethical grounds are children and teenagers retained to be cured by institutionalized 

education? 

COLONIZING OR DECOLONIZING CURRICULA 

The conference contained two plenary panels, the first with contributors from France, China, The 

Philippines and Denmark, almost all from the northern hemisphere; the second with contributors 

from Chile, Australia, Lebanon and South Africa, almost all from the southern hemisphere. Where 

the first panel talked more about solutions, the second panel talked more about problems. 

In the first panel, France and Denmark represented some of the world’s most centralized states with 

war-time educational systems dating back to the Napoleon era, which in France created elite-

schools to protect the young republic from the Germans, and in Germany created the Humboldt 

Bildung schools to end the French occupation by mediating nationalism, and to sort out the 

population elite for jobs as civil servants in the new central administration; both just replacing the 

blood-nobility with a knowledge-nobility as noted by Bourdieu. The Bildung system latter spread to 

most of Europe.  

Not surprisingly, both countries see university mathematics as the goal of mathematics education 

(‘mathematics is what mathematicians do’), despite the obvious self-reference avoided by instead 

formulating the goal as e.g. learning numerical competence, mastery of Many or number-language. 

Seeing mathematics as the goal, makes mathematics education an example of a goal displacement 

(Bauman) where a monopoly transforms a means into a goal. A monopoly that makes setcentric 

mathematics an example of what Habermas and Derrida would call a ‘center-periphery 

colonization’, to be decentered and decolonized by deconstruction. 

Artigue from France thus advocated an anthropological theory of the didactic, ATD, (p. 43-44), 

with a ‘didactic transposition process’ containing four parts: scholarly knowledge (institutions 

producing and using the knowledge), knowledge to be taught (educational system, ‘noosphere’), 

taught knowledge (classroom), and learned available knowledge (community of study). 

The theory of didactic transposition developed in the early 1980s to overcome the limitation of the 

prevalent vision at the time, seeing in the development of taught knowledge a simple process of 

elementarization of scholarly knowledge (Chevallard 1985). Beyond the well-known succession offered 

by this theory, which goes from the reference knowledge to the knowledge actually taught in classrooms 

(..), ecological concepts such as those of niche, habitat and trophic chain (Artaud 1997) are also essential 

in it.  

Niss from Denmark described the Danish ‘KOM Project’ leading to eight mathematical 

competencies per mathematical topic (pp. 71-72). 

The KOM Project took its point of departure in the need for creating and adopting a general 

conceptualisation of mathematics that goes across and beyond educational levels and institutions. (..) We 

therefore decided to base our work on an attempt to define and characterise mathematical competence in 

an overarching sense that would pertain to and make sense in any mathematical context. Focusing - as a 

consequence of this approach - first and foremost on the enactment of mathematics means attributing, at 

first, a secondary role to mathematical content. We then came up with the following definition of 
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mathematical competence: Possessing mathematical competence – mastering mathematics – is an 

individual’s capability and readiness to act appropriately, and in a knowledge-based manner, in situations 

and contexts that involve actual or potential mathematical challenges of any kind. In order to identify and 

characterise the fundamental constituents in mathematical competence, we introduced the notion of 

mathematical competencies: A mathematical competency is an individual’s capability and readiness to act 

appropriately, and in a knowledge-based manner, in situations and contexts that involve a certain kind of 

mathematical challenge. 

Some of the consequences by being colonized by setcentrism was described in the second panel. 

In his paper ‘School Mathematics Reform in South Africa: A Curriculum for All and by All?’ 

Volmink from South Africa Volmink writes (pp. 106-107):  

At the same time the educational measurement industry both locally and internationally has, with its 

narrow focus, taken the attention away from the things that matter and has led to a traditional approach of 

raising the knowledge level. South Africa performs very poorly on the TIMSS study. In the 2015 study 

South Africa was ranked 38th out of 39 countries at Grade 9 level for mathematics and 47th out of 48 

countries for Grade 5 level numeracy. Also in the Southern and Eastern Africa Consortium for 

Monitoring Educational Quality (SACMEQ), South Africa was placed 9th out of the 15 countries 

participating in Mathematics and Science – and these are countries which spend less on education and are 

not as wealthy as we are. South Africa has now developed its own Annual National Assessment (ANA) 

tests for Grades 3, 6 and 9. In the ANA of 2011 Grade 3 learners scored an average of 35% for literacy 

and 28% for numeracy while Grade 6 learners averaged 28% for literacy and 30% for numeracy. 

After thanking for the opportunity to participate in a cooperative effort on the search of better 

education for boys, girls and young people around the world, Oteiza from Chile talked about ‘The 

Gap Factor’ creating social and economic differences. A slide with the distribution of raw scores at 

PSU mathematics by type of school roughly showed that out of 80 points, the median scores were 

40 and 20 for private and public schools respectively. In his paper, Oteiza writes (pp. 81-83): 

Results, in national tests, show that students attending public schools, close to de 85% of school 

population, are not fulfilling those standards. How does mathematical school curriculum contribute to this 

gap? How might mathematical curriculum be a factor in the reduction of these differences? (..) There is 

tremendous and extremely valuable talent diversity. Can we justify the existence of only one curriculum 

and only one way to evaluate it through standardized tests? (..) There is a fundamental role played by 

researchers, and research and development centers and institutions. (..) How do the questions that 

originate in the classroom reach a research center or a graduate program? “Publish or perish” has led our 

researchers to publish in prestigious international journals, but, are the problems and local questions 

addressed by those publications?” 

The Gap Factor is also addressed in a paper by Hoyos from Mexico (pp. 258-259): 

The PISA 2009 had 6 performance levels (from level 1 to level 6). In the global mathematics scale, level 

6 is the highest and level 1 is the lowest. (..) It is to notice that, in PISA 2009, 21.8% of Mexican students 

do not reach level 1, and, in PISA 2015, the percentage of the same level is a little bit higher (25.6%). In 

other words, the percentage of Mexican students that in PISA 2009 are below level 2 (i.e., attaining the 

level 1 or zero) was 51%, and this percentage is 57% in PISA 2015, evidencing then an increment of 

Mexican students in the poor levels of performance. According to the INEE, students at levels 1 or cero 

are susceptible to experiment serious difficulties in using mathematics and benefiting from new 

educational opportunities throughout its life. Therefore, the challenges of an adequate educational 

attention to this population are huge, even more if it is also considered that approximately another fourth 

of the total Mexican population (33.3 million) are children under 15 years of age, a population in priority 

of attention”. 



62 

 

As a comment to Volminks remark “Another reason for its lack of efficacy was the sense of 

scepticism and even distrust about the notion of People's Mathematics as a poor substitute for the 

“real mathematics”” (p. 104), and inspired by the sociological Centre–Periphery Model for 

colonizing, by post-colonial studies, and by Habermas’ notion of rationalization and colonization of 

the lifeworld by the instrumental rationality of bureaucracies, I formulated the following question in 

the afterwards discussion: “As former colonies you might ask: Has colonizing stopped, or is it still 

taking place? Is there an outside central mathematics that is still colonizing the mind? What 

happens to what could be called local math, street math, ethno-math or the child’s own math?”  

CONCLUSION AND RECOMMENDATIONS 

Designing a curriculum for mathematics education involves several choices. First pre-, present and 

post-setcentric mathematics together with multi-year lines and half-year blocks constitute 3x2 

different kinds of mathematics education. Combined with three different ways of seeing 

competences, this offers a total of 18 different ways in which to perform mathematics education at 

each of the three educational levels, primary and secondary and tertiary, which may even be divided 

into parts. 

Once chosen, institutional rigidity may hinder curriculum changes. So, to avoid the ethical issues of 

forcing cures from self-referring diagnoses upon children and teenagers in need of guidance instead 

of cures, the absence of participants from federal states might be taken as an advice to replace the 

national multi-year macro-curriculum with regional half-year micro-curricula. At the same time, 

adopting the post version of setcentric mathematics will make the curriculum coherent with the 

mastery of Many that children bring to school, and relevant to learning the quantitative competence 

and numeracy desired by society. 

And, as Derrida says in an essay called ‘Ellipsis’ in ‘Writing and Difference’: “Why would one 

mourn for the centre? Is not the centre, the absence of play and difference, another name for death?”  

POSTSCRIPT: MANY-MATH, A POST-SETCENTRIC MATHEMATICS FOR ALL 

As post-setcentric mathematics, Many-math, can provide numeracy for all by celebrating the 

simplicity of mathematics occurring when recounting the ten fingers in bundles of 3s: 

T = ten = 1B7 3s = 2B4 3s = 3B1 3s = 4B-2 3s. Or, if seeing 3 bundles of 3s as 1 bundle of bundles,  

T = ten = 1BB0B1 3s = 1*B^2 + 0*B + 1 3s, or T = ten = 1BB1B-2 3s = 1*B^2 + 1*B – 2 3s. 

This number-formula shows that a number is really a multi-numbering of singles, bundles, bundles 

of bundles etc. represented geometrically by parallel block-numbers with units. Also, it shows the 

four ways to unite: on-top addition, multiplication, power and next-to addition, also called 

integration. Which are precisely the four ways to unite constant and changing unit- and per-numbers 

numbers into totals as seen by including the units; each with a reverse way to split totals. Thus, 

addition and multiplication unite changing and constant unit-numbers, and integration and power 

unite changing and constant per-numbers. We might call this beautiful simplicity ‘the Algebra 

Square’, also showing that equations are solved by moving to the opposite side with opposite signs. 

Operations unite/ 

split Totals in 
Changing Constant 
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Unit-numbers 

m, s, kg, $ 

T = a + n 

T – n = a 

T = a*n 

T/n = a 

Per-numbers 

m/s, $/kg, $/100$ = % 

T = ∫a*dn 

dT/dn = a 

T = a^n 

n√T = a    logaT = n 

An unbundled single can be placed on-top of the block counted in 3s as T = 1 = 1/3 3s, or next-to 

the block as a block of its own written as T = 1 = .1 3s Writing T = ten = 3 1/3 3s = 3.1 3s = 4.-2 3s 

thus introduces fractions and decimals and negative numbers together with counting. 

The importance of bundling as the unit is emphasized by counting: 1, 2, 3, 4, 5, 6 or bundle less 4, 7 

or B-3, 8 or B-2, 9 or B-1, ten or 1 bundle naught, 1B1, …, 1B5, 2B-4, 2B-3, 2B-2, 2B-1, 2B 

naught.  

This resonates with ‘Viking-counting’: 1, 2, 3, 4, hand, and1, and2, and3, less2, less1, half, 1left, 

2left. Here ‘1left’ and ‘2left’ still exist as ‘eleven’ and ‘twelve’, and ‘half’ when saying ‘half-tree’, 

‘half-four’ and ‘half-five’ instead of 50, 70 and 90 in Danish, counting in scores; as did Lincoln in 

his Gettysburg address: “Four scores and seven years ago …” 

Counting means wiping away bundles (called division iconized as a broom) to be stacked (called 

multiplication iconized as a lift) to be removed to find unbundled singles (called subtraction 

iconized as a horizontal trace). Thus, counting means postponing adding and introducing the 

operations in the opposite order of the tradition, and with new meanings: 7/3 means 7 counted in 3s, 

2x3 means stacking 3s 2 times. Addition has two forms, on-top needing recounting to make the 

units like, and next-to adding areas, i.e. integral calculus. Reversed they create equations and 

differential calculus. 

The recount-formula, T = (T/B)*B, appears all over mathematics and science as proportionality or 

linearity formula:  

• Change unit, T = (T/B)*B, e.g. T = 8 = (8/2)*2 = 4*2 = 4 2s 

• Proportionality, $ = ($/kg)*kg = price*kg 

• Trigonometry, a = (a/c)*c = sinA*c, a = (a/b)*b = tanA*b, b = (b/c)*c = cosA*c 

• STEM-formulas, meter = (meter/sec)*sec = speed*sec, kg = (kg/m^3)*m^3 = density*m^3 

• Coordinate geometry, y = (y/x)*x = m*x 

• Differential calculus, dy = (dy/dx)*dx = y’ * dx 

The number-formula also contains the formulas for constant change: T = b*x (proportional),                                 

T = b*x + c (linear), T = a*x^n (elastic), T = a*n^x (exponential), T = a*x^2 + b*x + c 

(accelerated).  

If not constant, numbers change: constant change roots pre-calculus, predictable change roots 

calculus, and unpredictable change roots statistics ‘post-dicting’ what we cannot be ‘pre-dicted’. 

THE GENERAL CURRICULUM CHOICES OF POST-SETCENTRIC MATHEMATICS  

Making the curriculum bridge cohere with the individual start levels in a class is obtained by always 

beginning with the number-formula, and with recounting tens in icons less than ten, e.g. T = 4.2 

tens = ? 7s, or u*7 = 42 = (42/7)*7, thus solving equations by moving to opposite side with opposite 
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sign. And by always using full number-language sentences with a subject, a verb and a predicate as 

in the word language, e.g. T = 2*3. This also makes the bridge cohere to previous and following 

bridges. 

Making the end level cohere to goals and values expressed by the society and by the learners is 

obtained by choosing mastery as the end goal, not of the inside self-referring setcentric construction 

of contemporary university mathematics, but of the outside universal physical reality, Many.  

Making the bridge passable is obtained by choosing Piagetian psychology instead of Vygotskyan.  

FLEXIBLE NUMBERS MAKE TEACHERS FOLLOW 

Changing a curriculum raises the question: will the teachers follow? Here, seeing the advantage of 

flexible numbers makes teachers interested in learning more about post-setcentric mathematics: 

Typically, division creates problems to students, e.g. 336/7. With flexible numbers a total of 336 

can be recounted with an overload as T = 336 = 33B6 = 28B56, so 336/7 = 28B56 /7 = 4B8 = 48; or 

with an underload as T = 336 = 33B6 = 35B-14, so 336/7 = 35B-14 /7 = 5B-2 = 48.  

Flexible numbers ease all operations: 

T = 48*7 = 4B8*7 = 28B56 = 33B6 = 336 

T = 92 – 28 = 9B2 – 2B8 = 7B-6 = 6B4 = 64 

T = 54 + 28 = 5B4 + 2B8 = 7B12 = 8B2 = 82 

To learn more about flexible numbers, a group of teachers can go to the MATHeCADEMY.net 

designed to teach teachers to teach MatheMatics as ManyMatics, a natural science about Many, to 

watch some of its YouTube videos. Next, the group can try out the “Free 1day Skype Teacher 

Seminar: Cure Math Dislike by ReCounting” where, in the morning, a power point presentation 

‘Curing Math Dislike’ is watched and discussed locally, and at a Skype conference with an 

instructor. After lunch the group tries out a ‘BundleCount before you Add booklet’ to experience 

proportionality and calculus and solving equations as golden learning opportunities in bundle-

counting and re-counting and next-to addition. Then another Skype conference follows after the 

coffee break.  

To learn more, a group of eight teachers can take a one-year in-service distance education course in 

the CATS approach to mathematics, Count & Add in Time & Space. C1, A1, T1 and S1 is for 

primary school, and C2, A2, T2 and S2 is for secondary school. For modelling, there is a study unit 

in quantitative literature. The course is organized as PYRAMIDeDUCATION where the 8 teachers 

form 2 teams of 4, choosing 3 pairs and 2 instructors by turn. An external coach helps the 

instructors instructing the rest of their team. Each pair works together to solve count&add problems 

and routine problems; and to carry out an educational task to be reported in an essay rich on 

observations of examples of cognition, both re-cognition and new cognition, i.e. both assimilation 

and accommodation. The coach assists the instructors in correcting the count&add assignments. In a 

pair, each teacher corrects the other’s routine-assignment. Each pair is the opponent on the essay of 

another pair. Each teacher pays for the education by coaching a new group of 8 teachers. The 

material mediates learning by experimenting with the subject in number-language sentences, i.e. the 
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total T. Thus, the material is self-instructing, saying “When in doubt, ask the subject, not the 

instructor”. 

The material for primary and secondary school has a short question-and-answer format. The 

question could be: “How to count Many? How to recount 8 in 3s? How to count in standard 

bundles?” The corresponding answers would be: “By bundling and stacking the total T, predicted 

by T = (T/B)*B. So, T = 8 = (8/3)*3 = 2*3 + 2 = 2*3 + 2/3*3 = 2 2/3*3 = 2.2 3s = 3.-1 3s. 

Bundling bundles gives multiple blocks, a polynomial: T = 456 = 4BundleBundle + 5Bundle + 6 = 

4*B^2 + 5*B + 6*1.” 
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COUNTING BEFORE ADDING, A PPP FOR THE ARTICLE ON A TWIN 

CURRICULUM 
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See the rest of the PPP on 

http://mathecademy.net/the-childs-own-twin-curriculum/ 

 

http://mathecademy.net/the-childs-own-twin-curriculum/

