Counting and ReCounting before Adding

Allan Tarp the MATHeCADEMY.net October 2019

BundleCounting and NextTo Addition roots Linearity and Integration

"How old next time?" "Four" the child said and showed 4 fingers. "Four?" I asked and showed 4 fingers held together 2 by 2. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. From this observation we can ask:

What kind of mathematical learning can take place when children count in bundles less than ten?

The methodology mixes French skepticism and American pragmatism: Traditions are deconstructed and grounded theory creates categories freely when working with the physical fact Many. Thus adding 2 5s and 4 3s on-top means changing units by recounting 4 3s in 5s; and 2 5s and 4 3s are added next-to in 8s by their area. So bundle-counting and next-to addition allows preschoolers to learn proportionality and integration, to be tested by designing appropriate preschool micro-curricula.

In the first micro-curriculum M1 children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in bundles manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to add two bundle-numbers next to each other. In the seventh, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition.

In most cases a calculator (to the right) predicts the result of the counting and re-counting jobs.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

N / /			
		8 9	
M2	7 1s is how many 3s?	7/3	2.some
	$ \rightarrow \rightarrow B B \rightarrow 2B1.3s \rightarrow 2.1.3s$	7 – 2x3	1
M3	2.75s = 3.25s = 435s		
M4	2 5s is also how many 4s?	2x5/4	2.some
		0x5 0 x 4	2
	1111 1111 = 1111 1111 = 1111 11111 so $2.5s = 2.2.4s$	2x5 – 2 x 4	2
M5	'2 5s and 4 3s total how many 5s?'	(2x5+4x3) /5	4.some
	1000 1000 1000 1000 1000 = 0.0000 0000 0	2x5+4x3 – 4x5	2
		(0.5.4.0) (0	0
M6	² 5s and 4 3s total how many 8s?	(2x5+4x3)/8	2.some
	11111 1111 111 111 111 = 1111111 111 11	2x5+4x3 – 2x8	6
M7	'2 5s and ? 3s total 4 5s?'	(4x5 – 2x5)/3	3.some
	$\begin{array}{c} 2 & 0 \\ 0 & 0 \\$	` /x5 _ 2x5 _ 3x5	1
	1111 1111 1111 1111 = 1111 1111 11 111 11	423 - 223 - 323	1
M8	'2 5s and ? 3s total how 2.1 8s?'	(4x5 – 2x5)/3	3.some
		4x5 – 2x5 – 3x5	1

An abacus can show how next-to addition of 2.2 5s and 1.2 3s gives 2.1 8s

M1 Creating Icons

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 1 Allan.Tarp @MATHeCADEMY.net

Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

Preface

M1, Creating Icons, is the first of a series of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANYmatics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

Say it

I		А			1
One	1 ones	Greek	Roman	lcon	Arabic

Write it

Stamp and Shade it

|--|--|--|--|--|

Form it

X		

1	2	3	4	5	6	7	8	9

Round it up & Color it

×	⊁	Ø))	D	D	D	A	A
×	⊁	Ø))	D	D	D	\bigcirc	\bigcirc
×	⊁	Ø))	→	→	→	→	→ →
×	⊁	Ø	Ø)	→	→	→	→	→
(\times)	×	Ø	Ø)					\square

Clap, Sing, Walk, Act & Letter it

1 ^{MM}	8	\odot	Α

Reward: Stickers, each counting two

Say it

	II	В	II	L	2
Two 1s	1 twos	Greek	Roman	Icon	Arabic

Write it

Stamp and Shade it

|--|

Form it

×~		

1	2	3	4	5	6	7	8	9

Round it up & Color it

×	℅	Ø))	D	D	D	A	\bigcirc
X	X	Ø))	D	D	D	$\widehat{\bigtriangleup}$	(
X	×	Ø))	→	→	→	→ →	\rightarrow
×	¥	Ø	Ø)	→	→	→	→ →	\rightarrow
×	×	Ø	Ø)					\boxtimes

Clap, Sing, Walk, Act & Letter it

ms ms	J ●	() () ()	В

Unite it

			\oplus	D	D	

Split it

Reward: Stickers, each counting two

Say it

		С		Ч	3
Three 1s	1 threes	Greek	Roman	Icon	Arabic

Write it

Stamp and Shade it

Form it

× ×		

1	2	3	4	5	6	7	8	9

Round it up & Color it

*	⊁	Ø))	D	D	D	\bigcirc	\bigcirc
×	⊁	Ø))	D	D	D	$\widehat{\bigtriangleup}$	\bigcirc
\mathbf{X}	⊁	Ø))	→ →	→	→ →	→ →	→
*	⊁	Ø	P)	→	→	→	→	→
\ X /	×	Ø	P)		\square			\square

Clap, Sing, Walk, Act & Letter it

MA MA		© ⊗ ©	С

Unite it

Split it

Reward: Stickers, each counting two

L	1	

Say it

		D		Ч	4
Four 1s	1 fours	Greek	Roman	Icon	Arabic

Write it

Ī				
F				-
L				

-		

Stamp and Shade it

|--|

Form it

XX		
x		

1	2	3	4	5	6	7	8	9

Round it up & Color it

×	×	Ø))	D	D	D	Â	\bigcirc
×	*	P))	D	D	D	$\widehat{\bigtriangleup}$	\bigcirc
×	×	Ø))	→	→ →	→	→	\rightarrow
×	×	Ø	Ø)	→	→ →	→	→	→
×	*	Ø	Ø)	\bowtie		\boxtimes	\bowtie	\boxtimes

Clap, Sing, Walk, Act & Letter it

ms ms		© 8	D
and and		() () ()	

Unite it

Split it

Reward: Stickers, each counting two

Say it

		E	V	5	5
Five 1s	1 fives	Greek	Roman	Icon	Arabic

Write it

Stamp and Shade it

Form it

~ ≯		
^×~		
≻ ∧		

1	2	3	4	5	6	7	8	9

Round it up & Color it

8	×	Ø	כ)	D	D	D	Â	Â
> >	×	Ø))	D	D	D	\bigcirc	\bigcirc
*	×	Ø))	\rightarrow	→	→	→ →	→
× /	×	Ø	Ø)	\rightarrow	→	→	→	→
35	×	Ø	Ø)	\boxtimes	\boxtimes	\bowtie		\bowtie

Clap, Sing, Walk, Act & Letter it

Unite it

Split it

Reward: Stickers, each counting two

H 🛞 🛞

Say it

		F	VI	6	6
Six 1s	1 sixs	Greek	Roman	lcon	Arabic

Write it

Stamp and Shade it

6		

Form it

چ ې		
^ ≻√		
^× *		

1	2	3	4	5	6	7	8	9

Round it up & Color it

×	×	Ø))	D	D	D	A	\bigcirc
< ≻	\approx	Ø))	D	D	D	$\widehat{\bigtriangleup}$	\bigcirc
×	35	Ø))	`	\rightarrow	\rightarrow	→	→
*	×	Ø	Ø)	→	→	→	→	→
*	×	Ø	Ø)	\bowtie	\boxtimes	\boxtimes	\bowtie	\boxtimes

Clap, Sing, Walk, Act & Letter it

W W W		0 8 0 8 0 8	F

Unite it

Split it

Reward: Stickers, each counting two (

Say it

		G	VII		7
Seven 1s	1 sevens	Greek	Roman	Icon	Arabic

Write it

Stamp and Shade it

9		

Form it

×్x		
×x x		

1	2	3	4	5	6	7	8	9

Round it up & Color it

×	8	Ø))	D	D	D	\bigcirc	\bigcirc
*	*	P))	D	D	D	$\widehat{\bigtriangleup}$	(
*	×)	Ø))	→	→	→	→	\rightarrow
⊁	×	Ø	Ø)	→	→	→	→	\rightarrow
\times	× /	P	Ø	כ	\bowtie	\bowtie	\boxtimes	\bowtie	\boxtimes

Clap, Sing, Walk, Act & Letter it

Split it

Say it

		Н	VIII	8	8
Eight 1s	1 eights	Greek	Roman	Icon	Arabic

Write it

Stamp and Shade it

B			
---	--	--	--

Form it

		గ ్గ గ
		× ×
		Х [°] Х

1	2	3	4	5	6	7	8	9

Round it up & Color it

×	×	Ø))	D	D	D	Â	Â
	*	Ø))	D	D	D	$\widehat{\clubsuit}$	$\widehat{\clubsuit}$
\backslash	× /	Ø))	→ →	→	→	→	→
×	×	Ø	Ø)	→ →	→	→	→	→
×	×	Ø	Ø)					

Clap, Sing, Walk, Act & Letter it

Unite it Unite

Split it

Reward: Stickers, each counting two

Say it

111111111		Ι	IX	Ę	9
Nine 1s	1 nines	Greek	Roman	Icon	Arabic

Write it

			_
			_

Stamp and Shade it

	Ą				
--	---	--	--	--	--

Form it

<u></u> ۲		
న ్ X		
X		
X°X		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

1	2	3	4	5	6	7	8	9

#### Round it up & Color it

(	⊁	34	Ø	)	)	D	D	D	$\bigcirc$	$\bigcirc$
	*	*	Ø	)	)	D	D	D	$\bigcirc$	$\bigcirc$
	℅	$\sim$	Ø	)	)	<b>→</b>	<b>→</b>	<b>→</b>	<b>→</b>	<b>→</b>
	℅	×	Ø	Ø	)	<b>→</b>	<b>→</b>	<b>→</b>	<b>→</b>	<b>→</b>
	×	~~	Ø	Ø	)				$\boxtimes$	$\boxtimes$

#### Clap, Sing, Walk, Act & Letter it



#### Split it

![](_page_24_Picture_6.jpeg)

#### Say it

![](_page_25_Figure_2.jpeg)

#### Write it

(	$\bigcirc$			

![](_page_25_Figure_6.jpeg)

#### Stamp and Shade it

	0				
--	---	--	--	--	--

#### Form it

1	2	3	4	5	6	7	8	9

### Round it up & Color it

×	×	Ø	)	)	D	D	D	Â	A
×	×	Ø	)	)	D	D	D	$\bigcirc$	$\bigcirc$
×	×	Ø	)	)	<b>→</b>	<b>→</b>	$\rightarrow$	→ →	<b>→</b>
×	×	Ø	Ø	)	<b>→</b>	<b>→</b>	$\rightarrow$	→ →	<b>→</b>
×	×	Ø	Ø	כ	$\bowtie$	$\bowtie$	$\boxtimes$	$\square$	$\bowtie$

#### Clap, Sing, Walk, Act & Letter it

Reward: Stickers, each counting two

# M2 Counting in Bundles

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 2 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

#### Preface

M2, Counting in Icons, is the second of a series of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANYmatics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

### 4 Counted in 2s

#### **Sticks**

G-cou	Inting		4-cοι	Inting
1111	lay out			lay out
++++	bundle	++ ++		bundle
H		2B	bun	dle-writing
H	stack			
T = 2 2s	Total	T = 2	2s	Total

#### Abacus

![](_page_31_Figure_4.jpeg)

#### Calculator

![](_page_31_Figure_6.jpeg)

T = 4 = 2.2s

### **4** Counted in 3s

#### **Sticks**

G-cour	nting	4	A-coun	ting
1111	lay out			lay out
+++1	bundle	++++1		bundle
		1B1	bundl	e-writing
III I	stack			
T = 1.1 3s	Total	T = 1.	1 3s	Total

#### Abacus

![](_page_32_Figure_4.jpeg)

#### Calculator

4/3	1.some
4 – 1 x 3	1

T = 4 = 1.1 3s

## **5** Counted in 2s

#### **Sticks**

	G-counting		A-counting
	lay out		lay out
++	bundle	++	bundle
		В	bundle-writing
	stack		
T =	Total	<b>T</b> =	Total

#### Abacus

![](_page_33_Figure_4.jpeg)

#### Calculator

5/2		
5 –		

### **5** Counted in 3s

#### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

#### Abacus

![](_page_34_Figure_4.jpeg)

#### Calculator

5/3		
5 –		

$$T = 5 = 3s$$

### 6 Counted in 2s

#### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

#### Abacus

![](_page_35_Figure_4.jpeg)

### Calculator

![](_page_35_Picture_6.jpeg)

T = 6 =
## 6 Counted in 3s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



T = 6 =

## **7** Counted in 2s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



T = 7 =

## **7** Counted in 3s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



T = 7 =

## **7** Counted in 4s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



Τ=

## **7** Counted in 5s

## **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



## 8 Counted in 2s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



Τ=

## 8 Counted in 3s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

### Abacus



## Calculator



## 8 Counted in 4s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

### Abacus



## Calculator



## 8 Counted in 5s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



## 9 Counted in 2s

## **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



## **9** Counted in 3s

## **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



Т=

## 9 Counted in 4s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

### Abacus



## Calculator



Т=

## 9 Counted in 5s

## **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack	Τ=	Total
<b>T</b> = Total		

## Abacus



## Calculator



Τ=

## **4** Counted in 5s

## **Sticks**

G-cour	nting	A	A-coun	ting
	lay out			lay out
	bundle	1111		bundle
		<b>0B4</b>	bundi	le-writing
	stack			
T = 0.4 5s	Total	T = 0.	4 5s	Total

## Abacus



## Calculator



## **5** Counted in 7s

### **Sticks**

G-counting		A-counting
lay out		lay out
bundle		bundle
	В	bundle-writing
stack		
<b>T</b> = Total	T =	Total

## Abacus



## Calculator



# **3 4s** Enumerated

as 5	S
------	---

1	2	3	4	В	B1	B2	<b>B</b> 3	<b>B4</b>	2B	2B1	2B2
1	2	3	4	10	11	12	13	14	20	21	22

as 6s

1	2	3	4	5	10	11	12	13	14	15	20

as 7s

		I	I								
1	2	3	4	5	6	10	11	12	13	14	15

as 8s

1	2	3	4	5	6	7	10	11	12	13	14

as 9s

1	2	3	4	5	6	7	8	10	11	12	13

1	2	3	4	5	6	7	8	9	10	11	12

## **4 3s** Enumerated



1	2	3	4	В				
1	2	3						

#### as 6s

1	2	3					

as 7s

		I	I		I		I	
1	2	3						

#### as 8s

1	2	3					

#### as 9s

1	2	3					

						I	I
1	2	3					

# **5 3s** Enumerated



I			I						
1	2	3							

#### as 6s

I						I	I		
1	2	3							

#### as 7s

			I	I		I	I	I	I	
1	2	3								

#### as 8s

1	2	3						

#### as 9s

1	2	3						

1	2	3						

# **3 5s Enumerated**



#### as 3s

I							I	
1								

#### as 2s

1							

#### as 5s

1	2	3						

#### as 7s

1	2	3						

1	2	3						

# **36S** Enumerated



#### as 3s

1									

#### as 4s

I									
1									

#### as 5s

1									

#### as 7s

1									

					I				
1									

# **29s** Enumerated



#### as 3s

1									

#### as 4s

1									

#### as 5s

1									

#### as 7s

1									

					I				I
1									

# **3 4s** Enumerated

B<u>2</u> : B less 2

1	2	B <u>2</u>	В <u>1</u>	В	B1	B2	2B <u>2</u>	2B <u>1</u>	2B	2B1	2B2
1	2	3	4	10	11	12	13	14	20	21	22

as 6s

1	2	3	B <u>2</u>	В <u>1</u>	10	11	12	13	14	15	20

as 7s

1	2	3	4	B <u>2</u>	В <u>1</u>	10	11	12	13	14	15

as 8s

1	2	3	4	5	B <u>2</u>	В <u>1</u>	10	11	12	13	14

as 9s

1	2	3	4	5	6	В <u>2</u>	В <u>1</u>	10	11	12	13

1	2	3	4	5	6	7	В <u>2</u>	В <u>1</u>	10	11	12

## **4 3s** Enumerated

as 5s

1	2	В <u>2</u>	В <u>1</u>	В				
1	2	3						

#### as 6s

1	2	3					

as 7s

1	2	3					

#### as 8s

1	2	3					

as 9s

1	2	3					

1	2	3					

# **M3** ReCounting in the Same Bundle

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 3 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

### Preface

M3, ReCounting in the same bundle, is the third of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANY matics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to add two bundlenumbers next to each other. In the seventh, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

A total of 4 2s can be written as 5.2 2s where 2 means 'less 2'.

4 2s ReCounted in 2s

Unbundle Sticks	T =	Calculator	
# # # #	4.0 2s		
# # # 11	3.2 2s	4x2 – 3x2	2
# # 1111	2.4 2s	4x2 – 2x2	4
# !!!!!	1.6 2s	4x2 – 1x2	6
1111111	0.8 2s	4x2 – 0x2	8
# # # # <mark>#</mark>	5. <mark>2</mark> 2s	4x2 – 5x2	-2
+ + + + + + + +	6. <mark>4</mark> 2s	4x2 – 6x2	-4



# **3 2S** ReCounted in 2s

Unbundle Sticks	T =	Calculator
# # #	3.0 2s	

G-mode	A-mode

# **3 3S** ReCounted in 3s

T =	Calculator	
3.0 3s		
	3.0 3s	3.0 3s

G-mode	A-mode

# 2 3s ReCounted in 3s

T =	Calculator
2.0 3s	
	T = 2.0 3s

G-mode	A-mode

# **3 4S** ReCounted in 4s

Bundle Sticks	Τ=	Calculator
++++ ++++ ++++	3.0 4s	

G-mode	A-mode

# 24S ReCounted in 4s

Unbundle Sticks	T =	Calculator
++++ ++++	2.0 4s	

G-mode	A-mode

# 4.1 2S ReCounted in 2s

Unbundle Sticks	T =	Calculator	
# # # # 1	4.1 2s		
# # # 111	3.3 2s	4x2 + 1 – 3x2	3
# # 11111	2.5 2s	4x2 + 1 – 2x2	5
# 111111	1.7 2s	4x2 + 1 – 1x2	7
11111111	0.9 2s	4x2 + 1 – 0x2	9
# # # # #	5. <u>1</u> 2s	4x2 + 1 – 5x2	-1
H H H H H H	6. <mark>3</mark> 2s	4x2 + 1 – 6x2	-3



# 3.1 2S ReCounted in 2s

Unbundle Sticks	T =	Calculator
# # # I	3.1 2s	

G-mode	A-mode

# 3.2 3s ReCounted in 3s

Bundle Sticks	Τ=	Calculator
+++ +++ +++ 1 1	3.2 3s	

G-mode	A-mode

# 2.1 3S ReCounted in 3s

Bundle Sticks	Τ=	Calculator
+++ +++ 1	2.1 3s	

G-mode	A-mode
# 3.1 4S ReCounted in 4s

Bundle Sticks	T =	Calculator
++++ ++++ ++++ 1	3.1 4s	

#### Abacus (bottom line for the less-numbers)

G-mode	A-mode

# 2.3 4s ReCounted in 4s

Unbundle Sticks	Τ=	Calculator
++++ ++++	2.3 4s	

#### Abacus (bottom line for the less-numbers)

G-mode	A-mode

# **3 4s** Enumerated

B<u>2</u> : B less 2

В <u>4</u>	В <u>З</u>	В <u>2</u>	В <u>1</u>	В	2B <u>4</u>	2B <u>3</u>	2B <u>2</u>	2B <u>1</u>	2B	3B4	3B3

as 3s

		I	I			I	
B <u>2</u>							

as 7s

as 2s

#### as 9s

#### as tens

# **3 5s Enumerated**



#### in 3s

I							

#### in 4s

		I	I		I		I	

#### in 6s

#### in 8s

#### in tens

# **36S** Enumerated



#### in 3s

#### in 4s

#### in 7s

#### in 9s

#### in tens

# **29s** Enumerated



#### in 4s

					I				

#### in 5s

							I	

#### in 6s

#### in 8s

#### in tens

				I				

# M4 ReCounting

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 4 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

#### Preface

M4, ReCounting, is the fourth of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANYmatics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

# 4 2S ReCounted in 3s

### **Sticks**

G-coi	Inting	A-counting				
11 11 11 11	unbundle		L	Inbundle		
+++ +++ +1	rebundle	+++ +++		rebundle		
III I		2B 2	bund	le-writing		
<b>III</b> I	stack					
T = 2.2 3	s Total	T = 2.	2 3s	Total		

### Abacus



### Calculator

4x2/3	2.some
4x2 – 2x3	2

T = 4 2s = 2.2 3s

# 5 2S ReCounted in 3s

### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 3s Total	T = 3s Total

### Abacus



5x2/3	
5x2 –	

$$T = 5 2s = 3s$$

# **2 3S** ReCounted in 4s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 3s Total	T = 3s Total

#### Abacus



# 5 3S ReCounted in 4s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 3s Total	T = 3s Total

### Abacus



# 3 4S ReCounted in 5s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 3s Total	T = 3s Total

### Abacus



# 2 4S ReCounted in 5s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 3s Total	T = 3s Total

### Abacus



# 2.1 5S ReCounted in 3s

### **Sticks**

G-cou	Inting	A-counting				
	unbundle			unbundle		
+++ +++ +++	rebundle	+++ +++ +++	. 📕	rebundle		
		000				
<b>##</b> 1	stack	382	DUN	ale-writing		
T = 3.2 3s	s Total	T = 3	.2 3s	Total		

#### Abacus



### Calculator

(2x5+1) / 3	3.some
(2x5+1) – 3x3	2

T = 2.1 5s = 3.2 3s

# 2.4 5S ReCounted in 3s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 3s Total	T = 3s Total

#### Abacus



### Calculator

T = 2.45s = 3s

# 2.3 7s ReCounted in 4s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 4s Total	T = 4s Total

#### Abacus



### Calculator

T = 2.37s = 4s

# 2.3 7S ReCounted in 5s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 5s Total	T = 5s Total

#### Abacus



### Calculator

T = 2.3 7s = 5s

# 2.4 8S ReCounted in 6s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 6s Total	T = 6s Total

#### Abacus



### Calculator

T = 2.4 8s = 6s

# 1.7 9S ReCounted in 5s

#### **Sticks**

G-counting	A-counting
unbundle	unbundle
rebundle	rebundle
stack	B bundle-writing
T = 5s Total	T = 5s Total

### Abacus



### Calculator

T = 1.7 9s = 5s

# 3 4s ReCounted in tens

### **Sticks**

G-cou	A	-count	ing	
1111 1111 1111	unbundle		IIII l	Inbundle
+++++++++++++++++++++++++++++++++++++++	rebundle			rebundle
ΧΙ	stack	1B2	bund	le-writing
T = 1.2 te	ens Total	T = 1.2	2 tens	Total

### Abacus



### Calculator



T = 3 4s = 1.2 tens = 12

# 7 4S ReCounted in tens

#### **Sticks**

	G-counti	ng		A-counting
	ur	nbundle		unbundle
	re	ebundle		rebundle
		stack	В	bundle-writing
T =	tens	Total	T =	tens Total

#### Abacus





### 47S ReCounted in tens

#### **Sticks**

	G-counti	ng		A-counting
	ur	nbundle		unbundle
	re	ebundle		rebundle
		stack	В	bundle-writing
T =	tens	Total	T =	tens Total

#### Abacus





### **388** ReCounted in tens

### **Sticks**

	G-counti	ng		A-counting
	ur	nbundle		unbundle
	re	ebundle		rebundle
		stack	В	bundle-writing
T =	tens	Total	T =	tens Total

### Abacus





# 2 4s ReCounted in tens

### **Sticks**

	G-counti	ng		A-counting
	ur	nbundle		unbundle
	re	ebundle		rebundle
		stack	В	bundle-writing
T =	tens	Total	T =	tens Total

### Abacus





# **29s** ReCounted in tens

### **Sticks**

	G-counti	ng		A-counting
	ur	nbundle		unbundle
	re	ebundle		rebundle
		stack	В	bundle-writing
T =	tens	Total	T =	tens Total

#### Abacus





# 2.3 tens ReCounted in 5s

#### **Sticks**

G-cou	nting	A-counting		
	unbundle		unbundle	
$\mathbf{V}\mathbf{V}\mathbf{V}\mathbf{V}\mathbf{I}\mathbf{I}\mathbf{I}$	rebundle	VVVVIII	rebundle	
V V I		<b>4B3</b> bi	undle-writing	
V I V I	stack		g	
T = 4.3 5s	Total	T = 4.3 5s	Total	

#### Abacus



#### Calculator

23/5	4.some
23 – 4x5	3

T = 23 = 2.3 tens = 4.3 5s = 4 3/5 5s

# 2.3 tens ReCounted in 7s

#### **Sticks**

G-counting		A-counting
unbundle		unbundle
rebundle		rebundle
	В	bundle-writing
stack		
T = Total	T =	Total

#### Abacus





# 3.5 tens ReCounted in 9s

#### **Sticks**

G-counting		A-counting
unbundle		unbundle
rebundle		rebundle
	В	bundle-writing
stack		
T = Total	T =	Total

#### Abacus





# 1.9 tens ReCounted in 3s

#### **Sticks**

G-counting		A-counting
unbundle		unbundle
rebundle		rebundle
	В	bundle-writing
stack		
T = Total	T =	Total

#### Abacus





# M5 OnTop Addition

#### Mathematics as MANYmatics A Natural Science about Many

Material for MicroCurriculum 5 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

#### Preface

M5, OnTop Addition, is the fifth of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANYmatics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

# 2 3s + 4 5s = ? 5s

ReC	Counting	Bundle-writing
	unbundle	T = 2 3s + 4 5s
+++++ I	rebundle	T = 1.1 5s + 4 5s
		T = 1B1 + 4B = 5B1
T = 2 3s =	1.1 5s	T = 5.1 5s

#### Abacus



#### Calculator

(2x3+4x5)/5	5.some
(2x3+4x5) – 5x5	1

T = 2 3s + 4 5s = 5.1 5s

# 3 2s + 4 5s = ?5s

ReCo	unting	Bundle-writing
	unbundle	T = 3 2s + 4 5s
	rebundle	Τ=
T = 3 2s =	5s	

#### Abacus



#### Calculator

T = 3 2s + 4 5s = 5s
### 2 3s + 5 4s = ? 4s

ReCounting	Bundle-writing	
unbundle	T = 2 3s + 5 4s	
rebundle	T =	
T = 2 3s = 4s		

#### Abacus



### 3 2s + 5 4s = ? 4s

ReCounting	Bundle-writing	
unbundle	T = 3 2s + 5 4s	
rebundle	Τ=	
T = 3 2s = 4s		

#### Abacus



### 4 3s + 6 5s = ? 5s

ReCounting	Bundle-writing
unbundle	T =
rebundle	

#### Abacus



### 3 4s + 2 5s = ? 4s

ReCounting	Bundle-writing	
unbundle	T =	
rebundle	Τ=	
T =		

### Abacus



### 2.1 3s + 3.4 5s = ? 5s

ReC	ounting	Bundle-writing
	unbundle	T = 2.1 3s + 3.4 5s
HHH I I	rebundle	T = 1.2 5s + 3.4 5s
		T = 1B2 + 3B4 = 4B6
T = 2.1 3s =	= 1.2 5s	T = 4.6 5s = 5.1 5s

Abacus



### Calculator

(2x3+1+3x5+4)/5	5.some
(2x3+1+3x5+4) – 5x5	1

T = 2.1 3s + 3.4 5s = 5.1 5s

### 4.2 3s + 3.2 5s = ? 5s

ReCounting	Bundle-writing
unbundle	T =
rebundle	Τ=
T =	

#### Abacus



### 2.1 3s + 3.2 4s = ? 4s

ReCounting	Bundle-writing
unbundle	T =
rebundle	Τ=
T =	

### Abacus



### 2.2 3s + 3.1 4s = ? 3s

ReCounting	Bundle-writing	
unbundle	Τ=	
rebundle	Τ=	
T =		

#### Abacus



### 2.1 4s + 3.4 5s = ? 5s

ReCounting	Bundle-writing
unbundle	T =
rebundle	Τ=
T =	

### Abacus



### 1.3 4s + 3.4 5s = ? 4s

ReCounting	Bundle-writing	
unbundle	Τ=	
rebundle	Τ=	
T =		

### Abacus



# M6 NextTo Addition

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 6 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

### Preface

M6, OnTop Addition, is the sixth of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANYmatics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

### 2 3s + 4 5s = ? 8s

G-counting	Coding	
111 111 + 11111 11111 11111 11111	CC SSSS,	CII = S
	CC SSSC II	
	<del>SC SC SC</del> II	bundle
T = 3.2 8s	T = 3.2 8s	



### Calculator

(2x3 + 4x5)/8	3.some
(2x3 + 4x5) – 3x8	2

T = 2 3s + 4 5s = 3.2 8s

### 3 2s + 4 5s = ? 7s

G-counting	Coding

### Abacus



### Calculator



### 2 3s + 5 4s = ? 7s

G-counting	Coding

### Abacus



### Calculator



### 3 2s + 5 4s = ? 6s

G-counting	Coding

### Abacus



### Calculator



### 4 3s + 6 5s = ? 8s

G-counting	Coding

### Abacus



### Calculator



Τ=

### 3 4s + 2 5s = ? 9s

G-counting	Coding

### Abacus



### Calculator



### 2.1 3s + 3.4 5s = ? 8s

G-counting	Coding	l
111 111 1 + 11111 11111 11111 1111	CC I SSS IIII,	CII = S
	CCISS 81	
	SC SC 8 II	bundle
2.1 3s + 3.4 5s = 3.2 8s	2.1 3s + 3.4 5s =	= 3.2 8s

Abacus



### Calculator

(2x3+1 + 3x5+4)/8	3.some
(2x3+1 + 3x5+4) – 3x8	2

T = 2.1 3s + 3.4 5s = 3.2 8s

### 2.1 3s + 3.5 4s = ? 7s

G-counting	Coding

#### Abacus





T = 2.1 3s + 3.5 4s = 7s

### 2.1 3s + 4.2 6s = ? 9s

G-counting	Coding

#### Abacus



### Calculator



## 1.1 2s + 2.1 3s = ? 5s

G-counting	Coding

#### Abacus



### Calculator



## 1.3 4s + 2.1 3s = ?7s

G-counting	Coding

#### Abacus



### Calculator



### 2.1 4s + 3.5 4s = ? 8s

G-counting	Coding

#### Abacus



### Calculator



# M7 Reversing OnTop Addition

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 7 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

### Preface

M7, Reversing OnTop Addition, is the seventh of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANY matics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to add two bundlenumbers next to each other. In the seventh, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

### 2 3s + ? 5s = 4 5s

G-counting	Codir	ng
11111 11111 11111 11111	SSSS,	CII = S
III III IIII IIII IIIII	CII CII S S	
	CC IIII SS	
T = 4 5s = 2 3s + 2.4 5s	T = 4 5s = 2 3s	s + 2.4 5s

Abacus



Calculator



T = 4 5s = 2 3s + 2.4 5s

### 3 2s + ? 5s = 4 5s

G-counting	Coding

#### Abacus



### ? 3s + 5 4s = 7 4s

G-counting	Coding

#### Abacus



### 3 2s + ? 4s = 4 4s

G-counting	Coding

#### Abacus



### 4 3s + ? 5s = 5 5s

G-counting	Coding

#### Abacus



### ? 4s + 2 5s = 6 4s

G-counting	Coding

#### Abacus



2.1 3s + ? 5s = 4 5s

G-counting	Coding	
11111 11111 11111 11111	S S S S, $CII =$	S
III III I III IIII IIII	CII CII S S	
	CC I III SS	
T = 4 5s = 2.1 3s + 2.3 5s	T = 4 5s = 2.1 3s + 2.3 5s	

#### Abacus





### T = 4 5s = 2 3s + 2.4 5s

### 4.2 3s + ? 5s = 4 5s

G-counting	Coding

#### Abacus


### 2.1 3s + ? 4s = 5 4s

G-counting	Coding

#### Abacus



### 2.2 3s + ? 4s = 5 3s

G-counting	Coding

#### Abacus



### 2.1 4s + ? 5s = 4 5s

G-counting	Coding

### Abacus



### ? 4s + 1.4 5s = 4 4s

G-counting	Coding

#### Abacus



# **M8** Reversing NextTo Addition

Mathematics as MANYmatics A Natural Science about Many

> Material for MicroCurriculum 8 Allan.Tarp @MATHeCADEMY.net

#### Curricula

Micro-curriculum 1. Creating Icon-numbers
Micro-curriculum 2. Counting in Bundles
Micro-curriculum 3. Re-counting Bundle-numbers in the Same Bundle
Micro-curriculum 4. Re-counting Bundle-numbers in a Different Bundle
Micro-curriculum 5. Adding Bundle-numbers OnTop
Micro-curriculum 6. Adding Bundle-numbers NextTo
Micro-curriculum 7. Reversing Adding Bundle-numbers OnTop
Micro-curriculum 8. Reversing Adding Bundle-numbers NextTo

### Preface

M8, Reversing NextTo Addition, is the eight of 8 micro-curricula in mathematics for preschool and home schooling. They present mathematics as MANYmatics, a natural science about the physical fact Many. They all build upon the following observation:

"How old will you be next time?" I asked the child. "Four", he answered and showed me four fingers. "Four, you said?" I asked and showed him four fingers held together two by two. "No, that is not four, that is two twos!" the child replied thus insisting upon what exists, bundles of twos, and two of them. Likewise, preschool children have no difficulties counting in other units than ten, even if they only learn how to count in tens.

The micro-curricula use activities with concrete material to obtain its learning goals in accordance with Piaget's principle 'greifen vor begrifen' (grasp to grasp).

In the first, children learn to use sticks to build the number icons up to nine, and to use strokes to draw them, thus realizing there are as many sticks and strokes in the icon as the number it represents, if written less sloppy. In the second, children learn to count a given total in icons manually, using an abacus and by using a calculator. In the third, children learn to recount a total in the same unit. In the fourth, children learn to recount a total in a different unit. In the fifth, children learn to add two bundle-numbers on top of each other. In the sixth, children learn to reverse on-top addition. And in the eights, children learn to reverse next-to addition

As to concrete material, anything goes in the first micro-curriculum. The others will use sticks and strokes, beads on an abacus, LEGO-like blocks and squares, and a calculator respecting the priority of the operations. Fingers, pegs on a pegboard and other concrete material might also be used.

Some of the curricula can use silent education where the instructor is allowed to demonstrate and guide through actions, but not through words; or by using words form a foreign language not understood by the child.

G stands for Geometry and A stands for Algebra.

### 2 3s + ? 5s = 3 8s

G-counting	Codin	g
	CS CS CS,	CII = S
III III II III IIII IIII IIII	CC SSCS	
	CC SSS C	bundle
T = 3 8s = 2 3s + 3.3 5s	T = 3 8s = 2 3s + 3.3 5s	

Abacus



### Calculator

(3x8 – 2x3)/5	3.some
(3x8 – 2x3) – 3x5	3

T = 3 8s = 2 3s + 3.3 5s

MATHeCADEMY.net

## 3 2s + ? 5s = 2 7s

G-counting	Coding

### Abacus



### Calculator



Т=

### 2 3s + ? 4s = 3 7s

G-counting	Coding

### Abacus



### Calculator

Т=

### 3 2s + ? 4s = 4 6s

G-counting	Coding

#### Abacus



### Calculator



### 4 3s + ? 5s = 3 8s

G-counting	Coding

### Abacus



### Calculator



### 3 4s + ? 5s = 2 9s

G-counting	Coding

#### Abacus



### Calculator



2.1 3s + ? 5s = 3 8s

G-counting	Coding
	CS CS CS,  CII = S
111 111 1 1 1111 11111 11111 11	CCIII SSS bundle
T = 3 8s = 2.1 3s + 3.2 5s	T = 3 8s = 2.1 3s + 3.2 5s

#### Abacus



### Calculator

(3x8 – (2x3+1))/5	3.some
(3x8 – (2x3+1)) – 3x5	2

T = 3 8s = 2.1 3s + 3.2 5s

MATHeCADEMY.net

### 2.1 3s + ? 4s = 3 7s

G-counting	Coding

### Abacus



### Calculator



T = 2.1 3s + 3.5 4s = 7s

## 2.1 3s + ? 6s = 3 9s

G-counting	Coding

### Abacus



### Calculator



## 1.1 2s + ? 3s = 25s

G-counting	Coding

### Abacus



### Calculator



### 1.3 4s + ? 3s = 2 7s

G-counting	Coding

#### Abacus



### Calculator



### 2.1 4s + ? 4s = 3 8s

G-counting	Coding

### Abacus



### Calculator

