The best way to predict THE FUTURE is to invent it (Alan Kay) Not me, Iam Alan Tarp, linvent FU

Welcome to a FractionFreeFuture - Welcome to 2040

Where mathe-matics is MANY-math, a natural science about MANY
The Roman

- that respects and develops childrens' own number-languge with
- Childrens' own double-numbers, $\mathrm{T}=2$ 3s \& childrens' own operations: Division: 9/4 means (9-split by 4) 9 recounted in 4s by pushing away Bundles \square Multiplication: 2×4 means (8) 2 times lifting Bundles of 4 s into a block
 Subtraction: $9-2 \times 4$ is a rope pulling away the block to find the unbundled ones
- Flexible Bundle-numbers: $T=9=1 B 54 s=2 B 14 s=3 B-34 s=2.14 s=21 / 44 s$
- Double-numbers in secondary school: Per-numbers \& fractions $(2 \$ / 3 \mathrm{~kg}, 2 \$ / 3 \$=2 / 3)$ both adding by their areas, i.e. as integral calculus

The Child's Own Mastery of Many Count \& ReCount \& DoubleCount before Adding NextTo \& OnTop

Master Many with Manymath

Education is a cure：Does it work

 In Sweden，OECD says that it excludes＂PISA 2012，however，showed a stark decline in the performance of 15 －year－old students in all three core subjects （reading，mathematics and science） during the last decade，with more than one out of four students not even achieving the baseline Level 2 in mathematics at which students begin to demonstrate competencies to actively participate in life．＂（page 3）

[^0]
Why teach children if they already know?

With education curing un-educatedness, we ask: To CURE, be SURE

1. The diagnosed is not already cured
2. The diagnose is not self-referring: teach math to learn math

Core Questions:

- What Mastery does children develop when adapting to Many?
- What could be a Question-guided ChildCenteredCurriculum in Quantitative Competence?

Adaption creates two language houses

The WORD language assigns words in sentences with The NUMBER language assigns numbers instead with

- a subject
- a verb
- a predicate

Both languages have a META-language, a grammar, describing the language, that is learned before the grammar. But does mathematics respect teaching language before grammar?

The Communicative Turn in language ed.

Before 1970, foreign language was taught as an example of its grammar. Then a reaction came with The Communicative Turn. Halliday: "A functional approach to language means investigating how language is used: trying to find out what are the purposes that language serves for us."
Likewise, Widdowson adopts a "communicative approach to the teaching of language" allowing more students to learn a language through its use for communication about outside things and actions.
Could mathematics also have its Communicative turn?
(META-language, grammar)

Children see Many as bundles with units

"How old next time?" A 3year old says "Four" showing 4 fingers: I | | | But, the child reacts strongly to 4 fingers held together 2 by 2: $\quad \mathrm{H}$ "That is not four, that is two twos" ($\mathrm{T} \neq 4, \mathrm{~T}=2 \mathbf{2 s}$)
The child sees what exists, and with units: bundles of $\mathbf{2 s}$, and 2 of them.

- The block 3 4s has two numbers: 3 (the counting-number) and 4 (the unit-number)

Let us invent a Question Driven Curriculum to minimize the 'mediated correctness' effect of textbooks and teachers

Q01. Create icons: \| \| \| \rightarrow IIII \rightarrow I \rightarrow

Children love making number-icons of cars, dolls, spoons, sticks.
 Changing four ones to one fours creates a 4 -icon with four sticks.

An icon contains as many sticks as it represents, if written less sloppy. Once created, icons become units to use when counting in bundles.

one I	two	three	four	five	six	seven	eight	nine
I	\square	III	IIII	IIIII	IIIIII	IIIIIII	IIIIIII	IIIIIIIII
1		\square	\square	\square	\square	\square	\square	
1	2	3	4	5	6	7	8	9

Q02, counting sequences

"How to count fingers?"
Using $5 \boldsymbol{s}$ as the bundle-size, fingers can be counted as "OB1, OB2, OB3, OB4, OB5 - sorry, Bundle" and the rest can be counted in as
"Bundle\&1, B\&2, 2B less2, 2B-1, 2B, 1left, 2left (a-leven, twe- leyen)".
Follow-up activities could be counting the fingers in 3 s and 4 s and 7 s :

$$
\mathbf{T}=\text { ten }=1 \mathrm{~B} 3 \mathbf{7 s}=2 \mathrm{~B} 24 \mathrm{~s}=3 \mathrm{~B} 13 \mathrm{~s}=1 \mathrm{BB} 13 \mathrm{~s} .
$$

Q03, bundle-counting in icon-units

"How to count by bundling?"

Five fingers can be bundle-counted in pairs or triplets, allowing both an OVERLOAD and an UNDERLOAD; and reported in a number-language sentence with a subject \& a verb \& a predicate as e.g. $\mathrm{T}=23 \mathrm{~s}$.

Q04, unbundled as decimals or negatives or fractions
0.3 4s
or
1.-14s
or
3/4 4s

"Where to put the unbundled singles?"

When counting by bundling, the unbundled singles can be placed

NextTo the block counted as a block of 1 s

$\mathrm{T}=2 \mathrm{~B} 34 \mathrm{~s}=2.34 \mathrm{~s}$
A decimal number

OnTop of the block
counted as a bundle counted in bundles

$\mathrm{T}=3 \mathrm{~B}-1 \mathbf{4 s}=3 .-1 \mathbf{4 s}$
A negative number

$\mathrm{T}=2 \mathrm{3} / 4 \mathrm{4s}$
A fraction

Q04, counting in tens
"Where to put the unbundled singles with tens?"
Counting in tens, an outside Total of 2 tens $\& 3$ can be described inside as $\mathrm{T}=23$ if leaving out the unit and the decimal point,

- or as:

$\mathrm{T}=2.3$ tens
$\mathrm{T}=2 \mathrm{~B} 3$ tens

$\mathrm{T}=3 .-7$ tens
$\mathrm{T}=3 \mathrm{~B}-7$ tens

$\mathrm{T}=2 \quad 3 / 10$ tens
$T=23 / 10 B$ tens

Q05, calculators predict

"Can a calculator predict a counting result?"

We may see division as an icon for a broom pushing away bundles:
9/4 means 'from 9 , push away bundles of $4 s^{\prime}$.
The calculator says '2.some', thus predicting it can be done 2 times. Now multiplication iconizes a lift stacking the bundles into a block.

- Finally, subtraction iconizes a rope pulling away the block to look for unbundled singles.

- With ' $9-2 \times 4=1$ ' the calculator predicts that 9 can be recounted as 2B1 4s.

Q05, counting creates a ReCounting formula

```
ReCount from a total T, T/B times,
T=(T/B) x B
Bs is taken away and stacked
```

As sentences of the number language, Formulas Predict: Predicting that $\mathrm{T}=9=2.14 \mathrm{~s}$:

$9 / 4$	2 some
$9-2 \times 4$	1

Q05, the recounting formula is a core formula

$\mathrm{T}=(\mathrm{T} / \mathrm{B})^{*} \mathrm{~B}$ is all over STEM (Science, Technology, Engineering, Mathematics):

Proportionality	$y=k * x$		
Linearity	$\Delta y=(\Delta y / \Delta x) * \Delta x=m^{*} \Delta x$		
Local linearity	$\mathrm{dy}=(\mathrm{dy} / \mathrm{dx})^{*} \mathrm{dx}=\mathrm{y}^{\prime}{ }^{*} \mathrm{dx}$		
Trigonometry	$a=(a / b) * b=\tan A * b$		
Trade	\$ = (\$/kg) * $\mathrm{kg}=$ price $* \mathrm{~kg}$		
Science	$\begin{aligned} \text { meter } & =(\text { meter } / \text { second }) * \text { second } \\ & =\text { velocity } * \text { second } \end{aligned}$		b

Q06, recounting in a different unit

"How to change a unit?"

The recount-formula allows changing the unit.
Asking $\mathrm{T}=3 \mathbf{4 s}=$? $\mathbf{5 s}$, the recount-formula gives $\mathrm{T}=3 \mathbf{4 s}=(3 \times 4 / 5) 5 \mathbf{s}$.
Entering $3 \times 4 / 5$, the answer ' 2 .some' shows that a block of 25 s can be taken away.
With $3 \times 4-2 \times 5$, the answer ' 2 ' shows that 34 s can be recounted as $2 B 25 s$ or 2.25 s.
$34 \mathrm{~s}=\mathrm{IIII} \mathrm{III} \mathrm{IIII}=\mathrm{IIII} \mid \mathrm{IIIIII}=\mathrm{IIII} \| I I I I I=2 B 25 s=2.25 \mathrm{~s}$

$3 \times 4 / 5$	2. some
$3 \times 4-2 \times 5$	2

Change Unit = Proportionality

Q06, double-counting in two units creates DoubleNumbers or PerNumbers

"How to double-count in two units?"

DoubleCounting in kg \& \$, we get $\mathbf{4 k g}=\mathbf{5 \$}$ or 4 kg per $5 \$=4 \mathrm{~kg} / 5 \$=4 / 5 \mathrm{~kg} / \$=$ a PerNumber.

With 4 kg bridged to $5 \$$ we answer questions by recounting in the per-number.

Questions:

$7 \mathrm{~kg}=\mathbf{~} \$$	$\mathbf{8 \$}=$? kg
$7 \mathrm{~kg}=(7 / 4) \times 4 \mathrm{~kg}$	$8 \$$ $=(8 / 5) \times 5 \$$ $=(7 / 4) \times 5 \$=8.75 \$$
	$=(8 / 5) \times 4 \mathrm{~kg}=6.4 \mathrm{~kg}$

Answer: Recount in the PerNumber (Proportionality)

Q06, double-counting in the same unit creates fractions

"How to double-count in the same unit?"
Double-counted in the same unit, per-numbers are fractions, $2 \$$ per $9 \$=2 / 9$, or percentages, 2 per $100=2 / 100=2 \%$.
To find a fraction or a percentage of a total, again we just recount in the per-number.

- Taking 3 per 4 = taking ? per 100. With 3 bridged to 4 , we recount 100 in 4 s :
$100=(100 / 4) * 4$ giving $(100 / 4) * 3=75$, and 75 per $100=75 \%$.
- Taking 3 per 4 of 60 gives ?. With 3 bridged to 4 , we recount 60 in 4 s :
$60=(60 / 4) * 4$ giving $(60 / 4) * 3=45$.
- Taking 20 per 100 of 60 gives ?. With 20 bridged to 100 , we recount 60 in 100 s :
$60=(60 / 100) * 100$ giving $(60 / 100) * 20=12$.
We observe that per-numbers and fractions are not numbers but OPERATORS needing a number to become a number.

Proportionality shows the instability of 'School Math' I

Proportionality, Q1: "2kg costs $5 \$$, what does 7 kg cost"; Q2: "What does $12 \$$ buy?" $\rightarrow 1$) Regula de Tri (rule of three)
Re-phrase with shifting units, the unknown at last. From behind, first multiply then divide. Q1: ' $2 \mathrm{~kg} \operatorname{cost} 5 \$, 7 \mathrm{~kg}$ cost ? S '. Multiply-then-divide gives the $\$$-number $7 \times 5 / 2=17.5$.
Q2: ' $5 \$$ buys $2 \mathrm{~kg}, 12 \$$ buys ? $k g$ '. Multiply-then-divide gives the kg -number $12 \times 2 / 5=4.8$.
\rightarrow 2) Find the unit
Q1: 1 kg costs $5 / 2 \$$, so 7 kg cost $7 x(5 / 2)=17.5 \$$. Q2: $1 \$$ buys $2 / 5 \mathrm{~kg}$, so $12 \$$ buys $12 x(2 / 5)=4.8 \mathrm{~kg}$
$\rightarrow 3$) Cross multiplication
Q1: $2 / 5=7 / u$, so $2^{*} u=7 * 5, u=(7 * 5) / 2=17.5$. Q2: $2 / 5=u / 12$, so $5^{*} u=12 * 2, u=\left(12^{*} 2\right) / 5=4.8$
$\rightarrow 4$) 'Re-counting' in the 'per-number' $2 \mathrm{~kg} / 5 \$$ coming from 'double-counting' the total T .
Q1: $\mathrm{T}=7 \mathrm{~kg}=(7 / 2) \times 2 \mathrm{~kg}=(7 / 2) \times 5 \$=17.5 \$; \mathbf{Q 2}: \mathrm{T}=12 \$=(12 / 5) \times 5 \$=(12 / 5) \times 2 \mathrm{~kg}=4.8 \mathrm{~kg}$.

Proportionality shows the instability of 'School Math' II

\rightarrow 5) Modeling with linear functions using group theory from abstract algebra.

- A linear function $f(x)=c^{*} x$ from the set of positive kg-numbers to the set of positive $\$$-numbers, has the domain $D M=\{x \in R \mid x>0\}$.
- Knowing that $f(2)=c^{*} 2=5$, this equation is solved by multiplying with the inverse element to 2 on both sides, and applying the associative law, and the definition of an inverse element, and of the neutral element under multiplication:

$$
c^{*} 2=5 \bullet\left(c^{*} 2\right)^{* 1 / 2}=5^{* 1 / 2} \bullet c^{*}\left(2^{* 1 / 2}\right)=5 / 2 \bullet c^{*} 1=5 / 2 \bullet c=5 / 2
$$

- With $f(x)=5 / 2^{*} x$, the inverse function is $f^{-1}(x)=2 / 5^{*} x$.
- With 7 kg , the answer is $f(7)=5 / 2 * 7=17.5 \$$.
- With $12 \$$, the answer is $f^{-1}(12)=2 / 5^{*} 12=4.8 \mathrm{~kg}$.

Double-counting gives per-numbers in STEM multiplication formulas I

STEM typically contains multiplication formulas with per-numbers coming from double-counting.

Examples:

- $\mathrm{kg}=(\mathrm{kg} /$ cubic-meter $) \times$ cubic-meter $=$ density \times cubic-meter
- force $=$ (force/square-meter) \times square-meter $=$ pressure \times square-meter
- meter $=($ meter $/ \mathbf{s e c}) \times$ sec $=$ velocity \times sec
- energy $=($ energy $/ \mathbf{s e c}) \times$ sec $=$ Watt \times sec
- energy $=($ energy $/ \mathrm{kg}) \times \mathrm{kg}=$ heat $\times \mathrm{kg}$

Double-counting gives per-numbers in STEM multiplication formulas II

Extra STEM examples:

- gram = (gram/mole) \times mole $=$ molar mass \times mole;
- Δ momentum $=(\Delta$ momentum $/ \mathrm{sec}) \times$ sec $=$ force $\times \mathrm{sec}$;
- Δ energy $=(\Delta$ energy/ meter $) \times$ meter $=$ force \times meter $=$ work;
- energy/sec $=($ energy $/$ charge $) \times($ charge $/ s e c)$ or Watt $=$ Volt \times Amp;
- dollar = (dollar/hour) \times hour $=$ wage \times hour;
- dollar $=$ (dollar/meter) \times meter $=$ rate \times meter
- dollar $=($ dollar $/ \mathrm{kg}) \times \mathrm{kg}=$ price $\times \mathrm{kg}$.

[^0]: http：／／www．oecd．org／sweden／sweden－should－urgently－reform－its－school－system－to－improve－quality－and－equity．htm

