PerNumbers

The Roman

Fraction

eagle

The best way to predict **THE FUTURE** is to invent it (Alan Kay) Not me, I am Allan Tarp, I invent **FUTURE**

Welcome to a FractionFreeFuture - Welcome to 2040

Where mathe-matics is MANY-math, a natural science about MANY

- that respects and develops childrens' own number-languge with

- Childrens' own double-numbers, T = 2 3s & childrens' own operations: Division: 9/4 means (9 split by 4) 9 recounted in 4s by pushing away Bundles Multiplication: 2x4 means (8) 2 times lifting Bundles of 4s into a block
 Subtraction: 9 – 2x4 is a rope pulling away the block to find the unbundled ones
- Flexible **Bundle**-numbers: T = 9 = 1**B**5 **4s** = 2**B**1 **4s** = 3**B**-3 **4s** = 2.1 **4s** = 2 1/4 **4s**
- Double-numbers in secondary school: Per-numbers & fractions
 (2\$/3kg, 2\$/3\$ = 2/3) both adding by their areas, i.e. as integral calculus

The Child's Own Mastery of Many Count & ReCount & DoubleCount before Adding NextTo & OnTop

Master Many with ManyMath

Allan.Tarp@MATHeCADEMY.net, September 2019

Education is a cure: Does it work

In Sweden, OECD says that it excludes

"PISA 2012, however, showed a stark decline in the performance of 15-year-old students in all three core subjects (reading, mathematics and science) during the last decade, with more than one out of four students not even achieving the baseline Level 2 in mathematics at which students begin to demonstrate competencies to actively participate in life." (page 3)

Improving Schools in Sweden: An OECD Perspective 1 of 4 socially

http://www.oecd.org/sweden/sweden-should-urgently-reform-its-school-system-to-improve-quality-and-equity.htm

Why teach children if they already know?

With education curing un-educatedness, we ask: To CURE, be SURE

- 1. The diagnosed is not already cured
- 2. The diagnose is not self-referring: *teach math to learn math* Core Questions:
- What Mastery does children develop when adapting to Many?
- What could be a Question-guided <u>ChildCenteredCurriculum</u> in Quantitative Competence?

Adaption creates two language houses

The WORD language assigns words in sentences with	• a subject	
	• a verb	
The NUMBER language assigns numbers instead with	• a predicate	

Both languages have a META-language, a grammar, describing the language, that is learned before the grammar. But does mathematics respect teaching language before grammar?

	WORD language	NUMBER language
META-language, grammar	ʻis' is a verb	'x' is an operation
Language	This is a chair	T = 3x4
	WORLD	

The **Communicative Turn** in language ed.

Before 1970, foreign language was taught as an example of its grammar.

Then a reaction came with The Communicative Turn.

Halliday: "A functional approach to language means investigating how language is used: trying to find out what are the purposes that language serves for us."

Likewise, Widdowson adopts a "communicative approach to the teaching of language" allowing more students to learn a language through its use for communication about outside things and actions.

Children see Many as bundles with units

"How old next time?" A 3year old says "Four" showing 4 fingers: ||||But, the child reacts strongly to 4 fingers held together 2 by 2: |||||"That is not four, that is two twos" ($T \neq 4$, T = 2 **2s**)

The child sees what exists, and with units: bundles of **2s**, and 2 of them.

• The block 3 **4s** has two numbers: 3 (the counting-number) and **4** (the unit-number)

Let us invent a **Q**uestion **D**riven **C**urriculum to minimize the 'mediated correctness' effect of textbooks and teachers

Children love making number-icons of cars, dolls, spoons, sticks. Changing four ones to one fours creates a 4-icon with four sticks.

An icon contains as many sticks as it represents, if written less sloppy. Once created, icons become units to use when counting in bundles.

one	two	three	four	five	six	seven	eight	nine	
Ι	П	Ш	Ш	11111	11111	111111	1111111	11111111	
						—			
1	2	3	4	5	6	7	8	9	

Q02, counting sequences

"How to count fingers?"

Using **5s** as the bundle-size, fingers can be counted as "0**B**1, 0**B**2, 0**B**3, 0**B**4, 0**B**5 – sorry, **Bundle**"

and the rest can be counted in as

"Bundle&1, B&2, 2B less2, 2B-1, 2B, 1left, 2left (a-leven, twe-leven)".

Follow-up activities could be counting the fingers in 3s and 4s and 7s:

T = ten = 1B3 7s = 2B2 4s = 3B1 3s = 1BB1 3s.

${ m Q03}$, bundle-counting in icon-units

"How to count by bundling?"

Five fingers can be bundle-counted in pairs or triplets, allowing both an <u>OVERLOAD</u> and an <u>UNDERLOAD</u>; and reported in a number-language sentence with a subject & a verb & a predicate as e.g. T = 2 **3s**.

- ||||| ++ || ++ ++ ++ <u>++ ++</u> |
- T = 5 = 1Bundle3 2s = 2B1 2s = 3B-1 2s = 1BB1 2s
- T = 5 = 1.3 2s = 2.1 2s = 3.-1 2s = 10.1 2s

Likewise, if counting in **ten**-bundles: T = 57 = 5B7 = 4B17 = 6B-3 tens

Q04, unbundled as decimals or negatives or fractions 3/4 **4s** or 1.-**14s** or 0.3 **4s**

"Where to put the unbundled singles?" When counting by bundling, the unbundled singles can be placed **NextTo** the block **OnTop** of the block

counted as a block of **1s** counted as a bundle counted in bundles

T = 2B3 4s = 2.3 4sA decimal number

T = 2 3/4 **4s** A fraction

${ m Q04}$, counting in tens

"Where to put the unbundled singles with tens?" Counting in tens, an outside Total of 2 tens & 3 can be described inside as T = 23 if leaving out the unit and the decimal point,

- or as:

Q05, calculators predict

"Can a calculator predict a counting result?"

We may see <u>division</u> as an icon for a broom pushing away bundles: 9/4 means 'from 9, push away bundles of 4s'.

The calculator says '2.some', thus predicting it can be done 2 times. Now <u>multiplication</u> iconizes a lift stacking the bundles into a block.

- Finally, <u>subtraction</u> iconizes a rope pulling away the block to look for unbundled singles.
- With '9-2x4 = 1' the calculator predicts that 9 can be recounted as 2B1 4s.

$\mathbf{Q}05$, counting creates a ReCounting formula

ReCount	from a total T , T/B times,
T = (T/B) x B	Bs is taken away and stacked

As sentences of the number language, Formulas Predict: Predicting that **T** = 9 = 2.1 **4s**:

$\mathbf{Q}05$, the recounting formula is a core formula

T = (**T**/**B**)***B** is all over STEM (Science, Technology, Engineering, Mathematics):

Proportionality	y = k * x	
Linearity	$\Delta y = (\Delta y / \Delta x) * \Delta x = m * \Delta x$	
Local linearity	dy = (dy/dx) * dx = y' * dx	
Trigonometry	a = (a/b) * b = tanA * b	
Trade	\$ = (\$/kg) * kg = price * kg	а
Science	meter = (meter/second) * second = velocity * second	A b

Q06, recounting in a different unit

"How to change a unit?"

The recount-formula allows changing the unit.

Asking T = 3 **4s** = ? **5s**, the recount-formula gives T = 3 **4s** = (3x4/5) **5s**.

Entering 3x4/5, the answer '2.some' shows that a block of 2 5s can be taken away.

With 3x4–2x5, the answer '2' shows that 3 **4s** can be recounted as 2B2 **5s** or 2.2 **5s**.

3x4/52.some3x4 - 2x52

Change Unit = Proportionality

Q06, double-counting in two units creates DoubleNumbers or **PerNumbers**

"How to double-count in two units?" DoubleCounting in kg & \$, we get **4kg = 5\$** or 4kg **per** 5\$ = 4kg/5\$ = 4/5 kg/\$ = a PerNumber.

With 4kg bridged to 5\$ we answer questions by recounting in the per-number. **Questions**:

7kg = ?\$	8\$ = ?kg
$7kg = (7/4) \times 4kg$	8\$ = (8/5) x 5\$
= (7/4) x 5\$ = 8.75\$	= (8/5) x 4kg $=$ 6.4kg

Answer: *Recount in the PerNumber (Proportionality)*

ake

Q06, double-counting in the same unit creates fractions

"How to double-count in the same unit?"

Double-counted in the same unit, per-numbers are fractions, 2\$ per 9\$ = 2/9, or percentages, 2 per 100 = 2/100 = 2%.

To find a fraction or a percentage of a total, again we just recount in the per-number.

- Taking 3 per 4 = taking ? per 100. With 3 bridged to 4, we recount 100 in 4s: 100 = (100/4)*4 giving (100/4)*3 = 75, and 75 per 100 = 75%.
- Taking 3 per 4 of 60 gives ?. With 3 bridged to 4, we recount 60 in 4s:

60 = (60/4)*4 giving (60/4)*3 = 45.

• Taking 20 per 100 of 60 gives ?. With 20 bridged to 100, we recount 60 in 100s: 60 = (60/100)*100 giving (60/100)*20 = 12.

> We observe that per-numbers and fractions are not numbers but OPERATORS needing a number to become a number.

Proportionality shows the instability of 'School Math' I

Proportionality, **Q1**: "2kg costs 5\$, what does 7kg cost"; **Q2**: "What does 12\$ buy?" →1) <u>Regula de Tri (</u>rule of three)

Re-phrase with shifting units, the unknown at last. From behind, first multiply then divide. Q1: $\frac{2 \text{ kg cost } 5\$, 7 \text{ kg cost }?\$}{2 \text{ kg cost }?\$}$. Multiply-then-divide gives the \$-number 7x5/2 = 17.5. Q2: $\frac{5\$ \text{ buys } 2 \text{ kg}, 12\$ \text{ buys }? \text{ kg}}{2 \text{ kg}}$. Multiply-then-divide gives the kg-number 12x2/5 = 4.8. \Rightarrow 2) <u>Find the unit</u> Q1: 1 kg costs 5/2\$, so 7 kg cost 7x(5/2) = 17.5\$. Q2: 1\$ buys 2/5 kg, so 12\$ buys 12x(2/5) = 4.8 kg

 $\Rightarrow 3) Cross multiplication$

Q1: 2/5 = 7/*u*, so 2**u* = 7*5, *u* = (7*5)/2 = 17.5. **Q2**: 2/5 = *u*/12, so 5**u* = 12*2, *u* = (12*2)/5 = 4.8

→4) '<u>Re-counting</u>' in the 'per-number' 2kg/5\$ coming from 'double-counting' the total T. Q1: T = 7kg = (7/2)x2kg = (7/2)x5\$ = 17.5\$; Q2: T = 12\$ = <math>(12/5)x5\$ = (12/5)x2kg = 4.8kg.

Proportionality shows the instability of 'School Math' II

- → 5) <u>Modeling</u> with linear functions using group theory from abstract algebra.
- A linear function f(x) = c*x from the set of positive kg-numbers to the set of positive \$-numbers, has the domain DM = {x∈R | x>0}.
- Knowing that $f(2) = c^*2 = 5$, this equation is solved by multiplying with the inverse element to 2 on both sides, and applying the associative law, and the definition of an inverse element, and of the neutral element under multiplication: $c^*2 = 5$ • $(c^*2)^{*1/2} = 5^{*1/2}$ • $c^*(2^{*1/2}) = 5/2$ • $c^*1 = 5/2$ • c = 5/2.
- With $f(x) = 5/2^*x$, the inverse function is $f^{-1}(x) = 2/5^*x$.
- With 7kg, the answer is f(7) = 5/2*7 = 17.5\$.
- With 12\$, the answer is $f^{-1}(12) = 2/5*12 = 4.8$ kg.

Double-counting gives per-numbers in STEM multiplication formulas I

STEM typically contains multiplication formulas with per-numbers coming from double-counting.

Examples:

- kg = (kg/cubic-meter) x cubic-meter = density x cubic-meter
- force = (force/square-meter) x square-meter = pressure x square-meter
- meter = (meter/sec) x sec = velocity x sec
- energy = (energy/sec) x sec = Watt x sec
- energy = (energy/kg) x kg = heat x kg

Double-counting gives per-numbers in STEM multiplication formulas II

Extra STEM examples:

- gram = (gram/mole) x mole = molar mass x mole;
- Δ momentum = (Δ momentum/sec) x sec = force x sec;
- Δ energy = (Δ energy/ meter) x meter = force x meter = work;
- energy/sec = (energy/charge) x (charge/sec) or Watt = Volt x Amp;
- dollar = (dollar/hour) x hour = wage x hour;
- dollar = (dollar/meter) x meter = rate x meter
- dollar = (dollar/kg) x kg = price x kg.