Q07, recounting from tens to icons

"How to change unit from tens to icons?"

Asking ' $\mathrm{T}=2.4$ tens $=24=$? 8 s ', we just recount 24 in 8 s :
$\mathrm{T}=24=(24 / 8) \times 8=3 \times 8=38 \mathrm{~s}$.

Formulated as an equation we use \boldsymbol{u} for the unknown number, $\mathbf{u x 8}=24$.
Recounting 24 in 8 s shows that \boldsymbol{u} is $24 / 8$. So, equations are solved by moving to opposite side - with opposite sign

To keep its size, a block changing its unit must also change its height.

$$
\begin{gathered}
u \times 8=24=(24 / 8) \times 8 \\
u=24 / 8=3
\end{gathered}
$$

Q8，recounting from icons to tens （multiplication） $37 \mathrm{~s}=$ ？tens

＂How to change unit from icons to tens？＂

Asking＇$T=37 \mathrm{~s}=$ ？tens＇，the recount－formula cannot be used since the calculator has no ten－button．However，it gives the answer directly by using multiplication alone： $\mathrm{T}=37 \mathrm{~s}=3 \times 7=21=2.1$ tens，only it leaves out the unit and the decimal point．
Alternatively，we may use＇less－numbers＇，so $7=$ ten less 3
$\mathrm{T}=3 \times 7=3 \times($ ten less 3 ）$=3 \times$ ten less $3 \times 3=3$ ten less $9=2 \boldsymbol{t e n} 1=21$ ，
or with $9=\boldsymbol{t e n}$ less 1 ：
T＝3ten less（ten less1）＝2ten lessless 1 ＝2ten \＆ $1=21$

Recounting large numbers in or from tens: same size, but new form

Recounting 6 47s in tens
Recounting 476 in 7s BundleWriting seprates INSIDE bundles from OUTSIDE singles

$$
\begin{aligned}
\mathrm{T}=6 \times 47=6 & \times 4 \mathrm{~B} 7 \\
& =24 \mathrm{~B} 42 \\
& =28 \mathrm{~B} 2 \\
& =28.2 \\
& \\
& \\
& \\
& \\
& \\
& =47 \mathrm{~B}=476 \\
& =42 \mathrm{~B} 56 \\
& \\
& =6 \times 7 \mathrm{~B} 8 \times 7 \\
& =68 \times 7
\end{aligned}
$$

Q09, ReCounting sides in a block: Trigonometry

A right triangle is a block halved by its diagonal giving 3 sides: base b, height a and diagonal c connected with the angles when recounting one side in the other side or in the diagonal

$$
\begin{aligned}
& a=(a / c)^{*} c=\sin A * c \\
& b=(b / c)^{*} c=\cos A * c \\
& \tan A=a / b=\Delta y / \Delta x=\text { gradient }
\end{aligned}
$$

Circle: circum./diam. $=\pi \approx n * \tan (\mathbf{1 8 0} / \mathrm{n})$ for n large

Once counted \& recounted, Totals can be added

BUT: NextTo \rightarrow OnTop	
$45 s+23 s=3 B 28 s$	$45 s+23 s=45 s+1 B 15 s=5 B 15 s$
The areas are integrated	
Adding areas = Integration	The units are changed to be the same Change unit = Proportionality

Q11, next-to addition

"With T1 $=45 \mathrm{~s}$ and $\mathrm{T} 2=23 \mathrm{~s}$, what is $\mathrm{T} 1+\mathrm{T} 2$ when added next-to as 8 s ?"

Outside, next-to addition geometrically means adding areas.
Next-to addition is also called integral calculus.
Inside, the recount formula algebraically predicts the result. Here multiplication precedes addition.

$$
\begin{aligned}
\mathrm{T} & =(\mathbf{T} / \mathbf{B}) \times \mathbf{B} \\
& =((4 \times 5+2 \times 3) / 8) \times 8=3.28 \mathrm{~s}
\end{aligned}
$$

$(4 \times 5+2 \times 3) / 8 \quad 3$. some
$(4 \times 5+2 \times 3)-3 \times 8$

Q12, reversed next-to addition

"If T1 = 23 s and T2 add next-to as 47 s , what is T2?"

Outside, we remove the initial block T1 and recount the rest in 4s.
Thus reversed next-to addition geometrically means subtracting areas.
Reversed next-to addition is also called differential calculus.
Inside, the recount formula algebraically predicts the result.
Here subtraction precedes division; which is natural as reversed integration.

$$
\begin{aligned}
\mathrm{T} 2 & =(\mathrm{T} 2 / \mathrm{B}) \times \mathbf{B} \\
& =((4 \times 7-2 \times 3) / 4) \times 4=5.24 \mathbf{s}
\end{aligned}
$$

$$
\begin{aligned}
& \hline(4 \times 7-2 \times 3) / 4 \\
& (4 \times 7-2 \times 3)-5 \times 4 \\
& \hline
\end{aligned}
$$

5.some

Q13, on-top addition

"With T1 = 45 s and T2 = 23 s , what is T1+T2 when added on-top?"
Outside, on-top addition geometrically means changing units. On-top addition thus often involves recounting (proportionality). $\mathrm{T}=45 \mathrm{~s}+23 \mathrm{~s}=45 \mathrm{~s}+1.15 \mathrm{~s}=5.15 \mathrm{~s}$ $\mathrm{T}=45 \mathrm{~s}+23 \mathrm{~s}=6.23 \mathrm{~s}+23 \mathrm{~s}=8.23 \mathrm{~s}$

| | | |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| | | |
| | | |
| | | |

Inside, the recount formula algebraically predicts the result. Here again, multiplication precedes addition.

$$
\begin{aligned}
T & =(T / B) \times B \\
& =((4 \times 5+2 \times 3) / 5) \times 5=5.15 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& (4 \times 5+2 \times 3) / 5 \\
& (4 \times 5+2 \times 3)-5 \times 5
\end{aligned}
$$

5.some

Q14, reversed on-top addition

"T1 = 23 s and how many 5 s (T2) add on-top as 45 s?"

Outside, we remove the initial block T1 and recount the rest in $\mathbf{5 s}$.
Thus reversed next-to addition geometrically means subtracting areas.
Reversed on-top addition is also called differential calculus.
Inside, the recount formula algebraically predicts the result.
Here again, subtraction precedes division.

$$
\begin{aligned}
\mathrm{T} 2 & =(\mathrm{T} 2 / \mathrm{B}) \times \mathrm{B} \\
& =((4 \times 5-2 \times 3) / 5) \times 5=2.45 \mathrm{~s}
\end{aligned}
$$

$$
\begin{array}{lr}
(4 \times 5-2 \times 3) / 5 & 2 . \text { some } \\
(4 \times 5-2 \times 3)-2 \times 5 & 4
\end{array}
$$

Q29, adding PerNumbers as areas (integration)

" 2 kg at $3 \$ / \mathrm{kg}+4 \mathrm{~kg}$ at $5 \$ / \mathrm{kg}=6 \mathrm{~kg}$ at $? \$ / \mathrm{kg}$?"

Q30，subtracting PerNumbers（differentiation）

＂ 2 kg at $3 \$ / \mathrm{kg}+4 \mathrm{~kg}$ at what $=6 \mathrm{~kg}$ at $5 \$ / \mathrm{kg}$ ？＂

$$
\begin{array}{r}
2 \mathrm{~kg} \text { at } 3 \$ / \mathrm{kg} \\
+4 \mathrm{~kg} \text { at } ? \$ / \mathrm{kg} \\
6 \mathrm{~kg} \text { at } 5 \$ / \mathrm{kg}
\end{array}
$$

Outside，we remove the initial 2×3 block and recount the rest in 4s．Geometrically，reversed per－number addition means subtracting areas to be reshaped，called differential calculus．

Inside，the recount－formula algebraically predicts the result．Here subtraction（giving a change，Δ ）precedes division．

Never add without units，the fraction paradox

The Teacher	The Students
What is $1 / 2+2 / 3$ ？	Well， $1 / 2+2 / 3=(1+2) /(2+3)=3 / 5$
No！ $1 / 2+2 / 3$ $=3 / 6+4 / 6$ $=7 / 6$	But $1 / 2$ of 2 cakes $+2 / 3$ of 3 cakes is $1+2$ of $2+3$ cakes，i．e． $3 / 5$ of 5 cakes ！ How can it be 7 cakes out of 6 cakes？
Inside this classroom $1 / 2+2 / 3$ IS $7 / 6!$	

Fractions are not numbers，but operators，needing numbers to become numbers． $2+3$ IS 5 ！No， 2 weeks +3 days is 17 days；and $2 \mathrm{~m}+3 \mathrm{~cm}=203 \mathrm{~cm}$ ． 2＊3 IS 6！Yes，since 3 is the unit，and $2 \mathbf{3 s}$ can be recounted to 61 s ．
 Adding without units：MatheMatism．

