Count \& Color Squares, Odd \& Even

$\mathbf{1}$	$\mathbf{2}$			$\mathbf{3}$			$\mathbf{4}$	F	$\mathbf{5}$			$\mathbf{6}$			$\mathbf{7}$			$\mathbf{8}$			$\mathbf{9}$	

9				8			7			6			5			4			3		2		1
\square																							

Migrant Math 01

From Sticks to Icons

$$
\|\|\| \rightarrow 4 \rightarrow 4 \rightarrow \text { FOUR }
$$

Many sticks can be arranged in a row of for example four ones. Four ones can be rearranged to 1 icon with four sticks. Written sloppy, the icon becomes a digit.
Icons are created for all numbers until ten.
Ten, eleven, twelve etc. has no icon because we count in tens. Ten is counted as 1 bundle and no unbundles, ten $=10$
Eleven is counted as 1 bundle and 1 unbundled, eleven $=11$
Twelve is counted as 1 bundle and 2 unbundled, twelve $=12$
In Danish, eleven and twelve means one left and two left, understood that a bundle has already been counted.
Six, seven, eight may also be counted as Bundle less 4, B-3, B-2 etc.

Migrant Math: Core Math for Late Beginners MATHeCADEMY.net Mathematics as ManyMath a Natural Science about Many
Job
I I III

Job		Do	Calculator
$\begin{aligned} & 27 s \\ & \text { in 5s } \end{aligned}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 7 \\ & 2 * 7 \end{aligned}$
$\begin{gathered} 26 s \\ \text { in } 5 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 6 \\ & 2 * 6 \end{aligned}$
$\begin{gathered} 26 s \\ \text { in } 4 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 6 \\ & 2 * 6 \end{aligned}$
$\begin{gathered} 26 s \\ \text { in } 3 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 6 \\ & 2 * 6 \end{aligned}$
$\begin{gathered} 25 s \\ \text { in } 4 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 5 \\ & 5 \end{aligned}$

Migrant Math 06
 ReCount in a new Unit

$$
T=3 \mathbf{5 s}=? \mathbf{6 s}
$$

Once counted in one unit, a total T can be recounted in another unit. A total of $3 \mathbf{5 s}$ can be recounted in $\mathbf{6 s}$ as in chapter 04

- by lining, counting, bundling, stacking, bundle-writing and answering
- by asking a calculator to predict the result using two formulas:

> The ReCount formula $\mathbf{T}=(\mathbf{T} / \mathbf{B}) * \mathbf{B}$ saying that 'from T, T/B times Bs can be taken away'
> The ReStack formula $\mathbf{T}=(\mathbf{T}-\mathbf{B})+\mathbf{B}$ saying that
> 'from T, T-B is left when B is placed next to'.

To change a unit is also called proportionality.
Calculator prediction:

Answer: $\mathrm{T}=35 \mathrm{~s}=2.3 \mathbf{6 s}$
Migrant Math: Core Math for Late Beginners MATHeCADEMY.net
Mathematics as ManyMath a Natural Science about Many
06. ReCount in a New Unit

Job		Do	Calculator
$\begin{gathered} 29 s \\ \text { in } 6 s \end{gathered}$	Line Count Bundle Stack B-write Answer	$\begin{aligned} & T=3 B \\ & T=29 s=36 s \end{aligned}$	$\begin{array}{ll} 2 * 9 / 6 & 3 \\ 2 * 9-3 * 6 & 0 \end{array}$
$\begin{gathered} 29 s \\ \text { in } 5 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 9 / \\ & 2 * 9 \end{aligned}$
$\begin{gathered} 28 \mathrm{~s} \\ \text { in } 6 \mathrm{~s} \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 8 \\ & 2 * 8 \end{aligned}$
$\begin{gathered} 28 s \\ \text { in } 5 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\begin{aligned} & 2 * 8 \\ & 2 * 8 \end{aligned}$
$\begin{gathered} 27 s \\ \text { in } 6 s \end{gathered}$	Line Count Bundle Stack B-write Answer		$\left\lvert\, \begin{aligned} & 2 * 7 \\ & 2 * 7 \end{aligned}\right.$

Job		Do	Calculator
$\begin{gathered} 7 \\ \text { in } 2 \mathrm{~s} \end{gathered}$	B-write Ans.	$\begin{aligned} & \mathrm{T}=7=3 \mathrm{~B} 1=1 \mathrm{BB} 1 \mathrm{~B} 1 \\ & \mathrm{~T}=7=3.12 \mathrm{~s}=11.12 \mathrm{~s} \end{aligned}$	$\begin{array}{lr} 7 / 2 & \text { 3.some } \\ 7-3^{*} 2 & 1 \end{array}$
$\begin{gathered} 9 \\ \text { in } 2 \mathrm{~s} \end{gathered}$	B-write Ans.	$\begin{aligned} & \mathrm{T}=9=4 \mathrm{~B} 1=1 \mathrm{BB} 2 \mathrm{~B} 1=2 \mathrm{BB} 0 \mathrm{~B} 1=1 \mathrm{BBB} 0 \mathrm{~B} 0 \mathrm{~B} 1 \\ & \mathrm{~T}=9=4.12 \mathrm{~s}=12.12 \mathrm{~s}=20.12 \mathrm{~s}=100.12 \mathrm{~s} \end{aligned}$	$\begin{array}{lr} 9 / 2 & \text { 4.some } \\ 9-4^{*} 2 & 1 \end{array}$
$\begin{aligned} & 34 \mathrm{~s} \\ & \text { in } 2 \mathrm{~s} \end{aligned}$	B-write Ans.		
$\begin{aligned} & 35 s \\ & \text { in } 2 \mathrm{~s} \end{aligned}$	B-write Ans.		
$\begin{aligned} & 54 \mathrm{~s} \\ & \text { in } 2 \mathrm{~s} \end{aligned}$	B-write Ans.		
$\begin{aligned} & 47 \mathrm{~s} \\ & \text { in 3s } \end{aligned}$	B-write Ans.		
$\begin{aligned} & 48 \mathrm{~s} \\ & \text { in 3s } \end{aligned}$	B-write Ans.		
$\begin{aligned} & 49 \mathrm{~s} \\ & \text { in 3s } \end{aligned}$	B-write Ans.		
$\begin{aligned} & 57 \mathrm{~s} \\ & \text { in 3s } \end{aligned}$	B-write Ans.		
$\begin{aligned} & 58 \mathrm{~s} \\ & \text { in } 3 \mathrm{~s} \end{aligned}$	B-write Ans.		
$\begin{aligned} & 59 \mathrm{~s} \\ & \text { in } 3 \mathrm{~s} \end{aligned}$	B-write Ans.		
$\begin{aligned} & 68 \mathrm{~s} \\ & \text { in } 3 \mathrm{~s} \end{aligned}$	B-write Ans.		
$\begin{gathered} 78 \mathrm{~s} \\ \text { in 3s } \end{gathered}$	B-write Ans.		

Migrant Math 07

ReCount in BundleBundles

$T=9.3 \mathbf{5} \mathbf{s}=9 \mathrm{~B} 3 \mathbf{5} \mathbf{s}=1 \mathrm{BB} 4 \mathrm{~B} 3 \mathbf{5} \mathbf{s}=14.3 \mathbf{5} \mathbf{s}$

An overload in a bundle creates a bundles-of-bundles.
Counting a total T of 68 s in 5 s gives $\mathrm{T}=9.35 \mathrm{~s}$.
However, with 5 as the bundle-size, 5 bundles can be recounted as 1 bundle-of-bundles of $\mathbf{5 s}$ so that $\mathrm{T}=6 \mathbf{8 s}=9.35 \mathrm{~s}=14.35 \mathrm{~s}$.

Calculator prediction:

$6 * 8 / 5$	9. some	
$6 * 8-9 * 5$	3	$9 / 5$
$9-1 * 5$	4	

Answer: $T=6 \mathbf{8 s}=9.3 \mathbf{5 s}=14.3 \mathbf{5 s}$

Migrant Math: Core Math for Late Beginners MATHeCADEMY.net
Mathematics as ManyMath a Natural Science about Many

07. Recount in BundleBundles

Job		Do	Calculator
$\begin{gathered} 48 \mathrm{~s} \\ \text { in } 5 \mathrm{~s} \end{gathered}$	B-write Answer	$\begin{aligned} & T=48 s=6 B 2=1 B B 1 B 2 \\ & T=48 s=6.25 s=11.25 s=12 .-35 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 4 * 8 / 5 \quad 6 . \text { some } \\ & 4 * 8-6 * 5 \end{aligned}$
$\begin{gathered} 58 \mathrm{~s} \\ \text { in } 6 \mathrm{~s} \end{gathered}$	B-write Answer		
$\begin{gathered} 69 s \\ \text { in 7s } \end{gathered}$	B-write Answer		
$\begin{gathered} 99 s \\ \text { in 8s } \end{gathered}$	B-write Answer		
$\begin{gathered} 39 s \\ \text { in } 4 s \end{gathered}$	B-write Answer		
$\begin{gathered} 45 s \\ \text { in } 3 s \end{gathered}$	B-write Answer		
$\begin{gathered} 68 s \\ \text { in } 5 s \end{gathered}$	B-write Answer		
$\begin{gathered} 68 s \\ \text { in 4s } \end{gathered}$	B-write Answer		
$\begin{gathered} 78 s \\ \text { in } 5 s \end{gathered}$	B-write Answer		
$\begin{gathered} 78 s \\ \text { in 4s } \end{gathered}$	B-write Answer		
$\begin{gathered} 88 s \\ \text { in } 5 s \end{gathered}$	B-write Answer		
$\begin{gathered} 88 s \\ \text { in } 4 s \end{gathered}$	B-write Answer		

Job		Do	Calculator
$\begin{gathered} 253 \\ \text { in } 7 s \end{gathered}$	B-write Ans.	$\begin{aligned} & \mathrm{T}=2 \mathrm{~B} 5 \mathrm{~B} 3=25 \mathrm{~B} 3=21 \mathrm{~B} 43=21 \mathrm{~B} 42+1 \\ & \mathrm{~T}=3 \mathrm{~B} 6 * 7+1=36 * 7+1=361 / 7 \mathrm{ts} \end{aligned}$	$\begin{array}{lr} 253 / 7 & \text { 36.some } \\ 253-36 * 7 & 1 \end{array}$
$\begin{gathered} 253 \\ \text { in } 9 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 253 \\ \text { in } 5 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 253 \\ \text { in } 3 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 842 \\ \text { in 7s } \end{gathered}$	B-write Ans.		
$\begin{gathered} 842 \\ \text { in } 5 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 842 \\ \text { in } 4 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 842 \\ \text { in } 2 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 904 \\ \text { in } 8 s \end{gathered}$	B-write Ans.		
904	B-write Ans.		
$\begin{gathered} 904 \\ \text { in } 5 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 904 \\ \text { in } 3 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 789 \\ \text { in } 8 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 789 \\ \text { in } 5 s \end{gathered}$	B-write Ans.		
$\begin{gathered} 789 \\ \text { in 4s } \end{gathered}$	B-write Ans.		

Migrant Math 09

ReCount from Tens

$$
\mathrm{T}=3 \text { tens }=? 7 \mathrm{~s}
$$

A total of 3 tens can be recounted in 7 s as in chapter 06

- by lining (we shorten with Roman numbers as icons), counting, bundling, stacking, bundle-writing and answering
- by asking a calculator to predict the result using the two formulas

Calculator prediction:

$30 / 7$	4. some
$30-4 * 7$	2

Answer: $\mathrm{T}=3$ tens $=4.27 \mathbf{s}=\underline{42 / 7} \mathbf{7 s}$ (fraction form)
Recounting large numbers from tens, we save time using a multiplication table. So to recount a total T of 253 in 7 s we use bundle-writing to create an overload guided by the table:
$\mathrm{T}=253=25 \mathbf{B} 3=21 \mathbf{B} 43=21 \mathbf{B} 42+1=3 \mathbf{B} 6 * 7+1$
$\mathrm{T}=253=367 \mathrm{~s}+1=361 / 7 \mathrm{f}$.

Migrant Math: Core Math for Late Beginners
MATHeCADEMY.net
Mathematics as ManyMath a Natural Science about Many

09. Recount From Tens

Job		Do	Calculator
$\begin{gathered} 37 \\ \text { in 9s } \end{gathered}$	Line ReBundle B-write Answer	XXXVII 91 9191 V II -> 999X -> 99991 $3 \mathbf{B} 7=\mathbf{B} 37=\mathbf{B} 36+1=\mathbf{B} 4 * 9+1$ $\mathrm{T}=37=4 * 9+1=4.19 \mathrm{~s}=41 / 9 \mathrm{~g}$	$\begin{array}{lr} 37 / 9 & 4 . \text { some } \\ 37-4^{*} 9 & 1 \end{array}$
$\begin{gathered} 37 \\ \text { in 7s } \end{gathered}$	Line ReBundle B-write Answer		
$\begin{gathered} 37 \\ \text { in } 5 s \end{gathered}$	Line ReBundle B-write Answer		
$\begin{gathered} 42 \\ \text { in 7s } \end{gathered}$	Line ReBundle B-write Answer		
$\begin{gathered} 42 \\ \text { in } 5 s \end{gathered}$	Line ReBundle B-write Answer		
$\begin{gathered} 26 \\ \text { in } 7 s \end{gathered}$	Line ReBundle B-write Answer		
$\begin{gathered} 26 \\ \text { in } 5 s \end{gathered}$	Line ReBundle B-write Answer		

Job		Do	Calculator
17 43s	B-write Ans.	$\begin{aligned} & \mathrm{T}=17 * 4 \mathrm{~B} 3=68 \mathrm{~B} 51=73 \mathrm{~B} 1=731 \\ & \mathrm{~T}=1743 \mathrm{~s}=73.1 \text { tens }=731 \end{aligned}$	$\begin{aligned} & 17 * 43 \\ & 731 \end{aligned}$
27 43s	B-write Ans.		
37 43s	B-write Ans.		
47 43s	B-write Ans.		
57 43s	B-write Ans.		
67 43s	B-write Ans.		
77 43s	B-write Ans.		
87 43s	B-write Ans.		
$\begin{gathered} \hline 32 \\ 243 \mathrm{~s} \\ \hline \end{gathered}$	B-write Ans.	$\begin{aligned} & \mathrm{T}=32 * 2 \mathrm{~B} 4 \mathrm{~B} 3=64 \mathrm{~B} 128 \mathrm{~B} 96=64 \mathrm{~B} 137 \mathrm{~B} 6 \\ & =77 \mathrm{~B} 7 \mathrm{~B} 6=777.6 \text { tens }=7776 \end{aligned}$	$\begin{aligned} & 32 * 243 \\ & 7776 \\ & \hline \end{aligned}$
$\begin{array}{r} \hline 35 \\ 413 \mathrm{~s} \\ \hline \end{array}$	B-write Ans.		
$\begin{gathered} \hline 43 \\ 343 \mathrm{~s} \end{gathered}$	B-write Ans.		
$\begin{gathered} 56 \\ 453 \mathrm{~s} \\ \hline \end{gathered}$	B-write Ans.		
$\begin{gathered} \hline 62 \\ 637 \mathrm{~s} \end{gathered}$	B-write Ans.		
$\begin{gathered} \hline 74 \\ 843 \mathrm{~s} \end{gathered}$	B-write Ans.		
$\begin{gathered} \hline 87 \\ 543 \mathrm{~s} \end{gathered}$	B-write Ans.		
$\begin{gathered} \hline 92 \\ 493 \mathrm{~s} \\ \hline \end{gathered}$	B-write Ans.		

Migrant Math 10

ReCount Large Numbers in Tens

$\mathrm{T}=7$ 43s $=7^{*} 43=7 * 4 \mathrm{~B} 3=28 \mathrm{~B} 21=30 \mathrm{~B} 1=$ 301

To reCount large numbers in Tens, bundle-writing is used to create an overload, later to be removed to get the final answer.
To recount 7 43s in tens gives a total
$\mathrm{T}=7$ 43s $=7 * 43=7 * 4 \mathrm{~B} 3=28 \mathrm{~B} 21=30 \mathrm{~B} 1=301=30.1$ tens
This makes sense: Shrinking the width of the stack from 43 to ten means increasing the height to keep the same total.

Calculator prediction:

Answer: $\mathrm{T}=3 \mathbf{8 s}=24=2.4$ tens
Migrant Math: Core Math for Late Beginners MATHeCADEMY.net

Mathematics as ManyMath a Natural Science about Many

10. Recount Large Numbers in Tens

Job		Do	Calculator	
7 43s	B-write Answer	$\begin{aligned} & \mathrm{T}=7 * 4 \mathrm{~B} 3=28 \mathrm{~B} 21=30 \mathrm{~B} 1=301 \\ & \mathrm{~T}=743 \mathrm{~s}=30.1 \text { tens }=301 \end{aligned}$	7*43	301
$843 s$	B-write Answer			
943s	B-write Answer			
6 43s	B-write Answer			
5 62s	B-write Answer			
4 62s	B-write Answer			
3 62s	B-write Answer			
2 62s	B-write Answer			
27 436s	B-write Answer			
3 436s	B-write Answer			
4 436s	B-write Answer			
5 436s	B-write Answer			
6 436s	B-write Answer			
7 436s	B-write Answer			
8 436s	B-write Answer			

