DE-MODEL Numbers & Operations & Equations

Adaptive Green Mathematics: Kids' own DoubleNumbers with Units Bundle- & Per-Numbers in Primary & Secondary School Understanding: From INSIDE-INSIDE to OUTSIDE-INSIDE

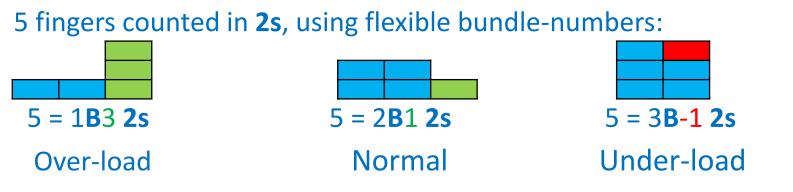
The Goal of Math Education, is that to Master outside Many, Or Master inside Math (to later master outside Many)

Allan.Tarp@MATHeCADEMY.net, Denmark, December 2019

Observation 01: Is Mathematics WellDefined? No, three Versions: MetaMatics, MatheMatism, ManyMath

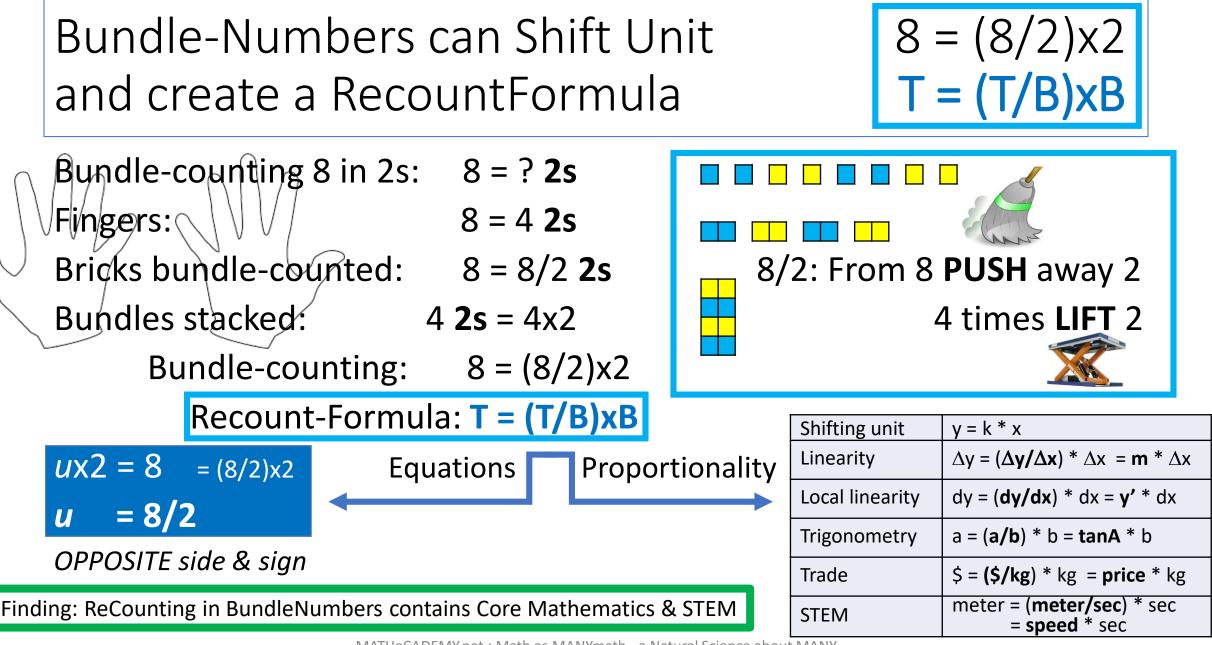
This is true	Always	Never		imes
2 + 3 = 5	Only with the same	unit; 2weeks + 3da	ays = 17days x (MatheMatsim)
2 x 3 = 6	x 2x3 is 2 3 s	with 3 as unit, that	recounts as 6 1s	(ManyMath)
$\frac{1}{2} + \frac{2}{3} = \frac{3}{5}$	1 of 2 apples + 2 of 3	B apples gives 3 of	x 5 apples, and n	(ManyMath) <mark>ot 7 of 6</mark>
$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$	Only if taken of the sections are not numbers,		·	MatheMatsim) numbers
C <u>1:</u> a FUNCTION is	For example 2+ <i>x</i> , but no i.e. a name for a calculat		ed number	(1750-1900) (ManyMath)
<u>C2:</u>	An example of a SET-rel first component identity		onent identity	(after 1900) (MetaMatics)

Observation 02: Adapting to Many, Children create Flexible BundleNumbers with Units

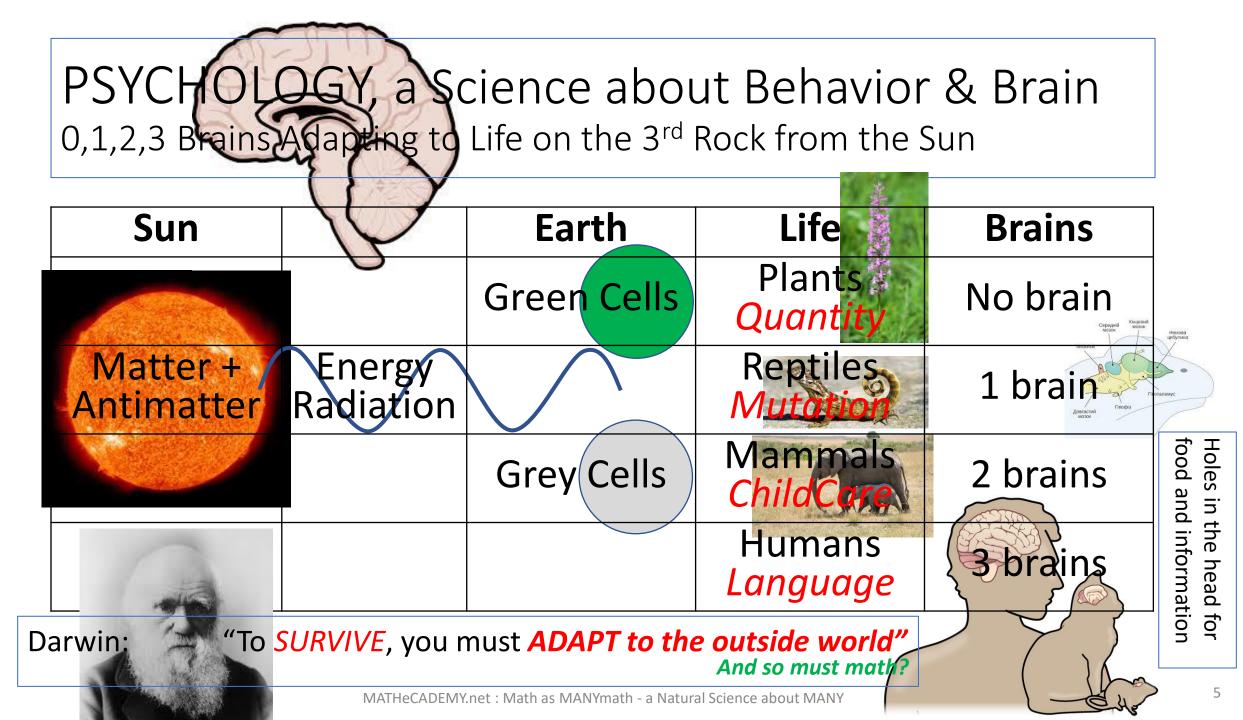

"How old next time?" A 3year old says "Four" showing 4 fingers:

But, reacts strongly to 4 fingers held together 2 by 2:

"That is not four, that is two **twos**"


Adapting to Many, a child uses BUNDLE-NUMBERS to describe what exists, and with units: bundles of **2s**, and 2 of them.

The block 3 4s has two numbers: 3 (the counting-number) & 4 (the unit-number)



MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

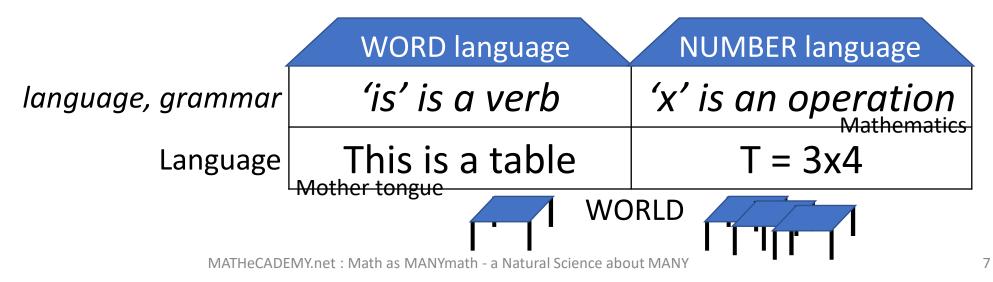
MATHeCADEMY.net

Standing up Created a Brain for Balance & Language Forelegs became Hands to Grab and Share Food & Information

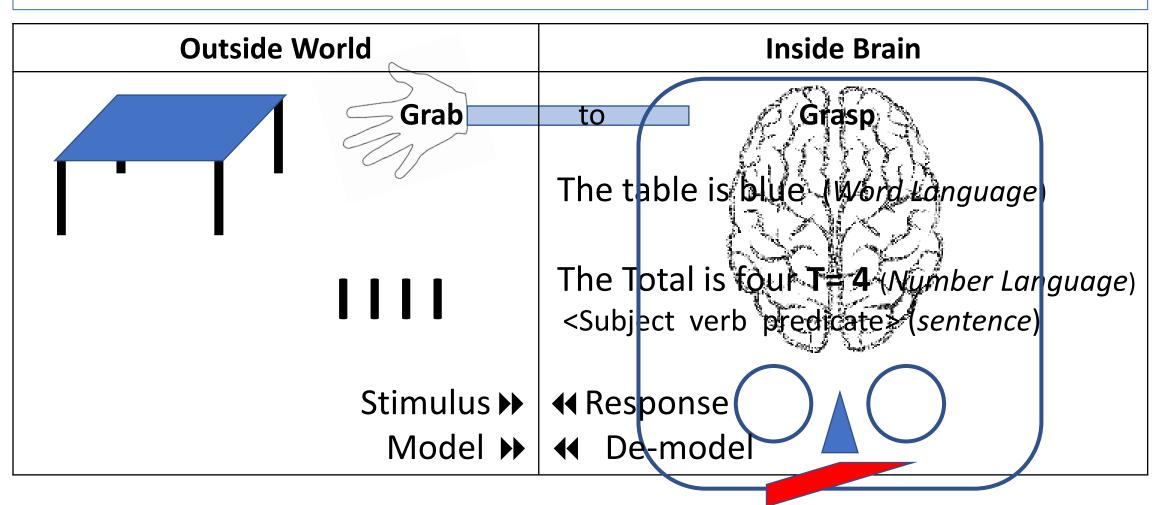
Humans have 3 brains:

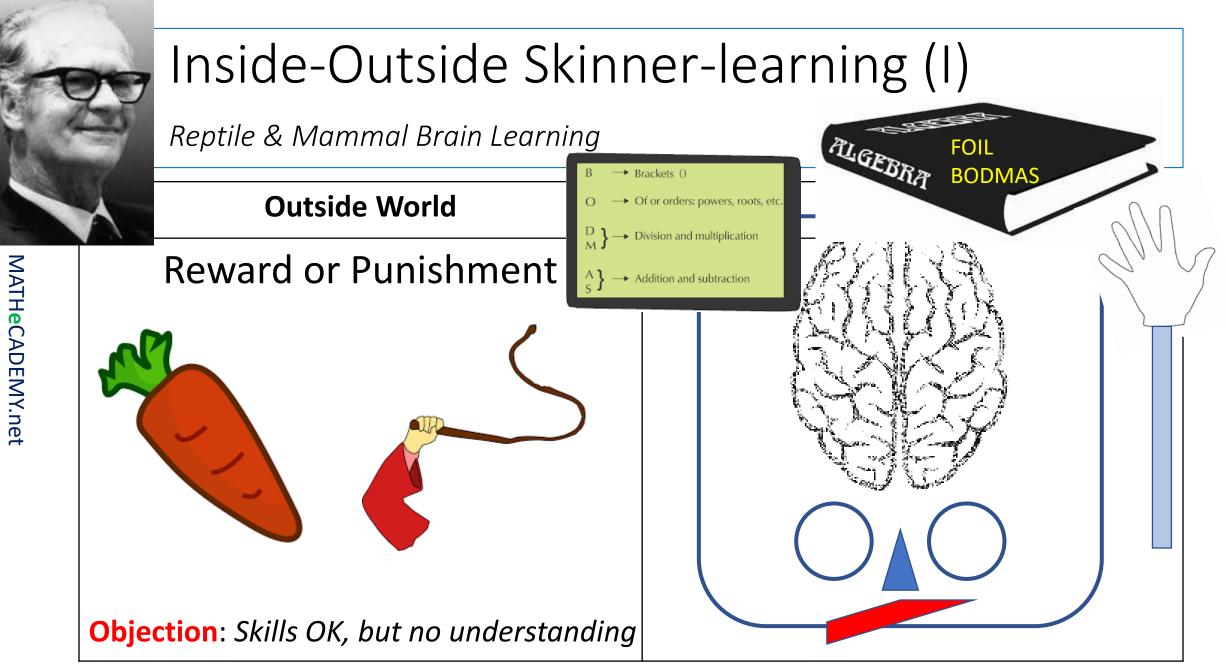
A Reptile Brain for routines

• By heart, I know tables, formulas, quadratics, FOIL, BODMAS, etc.


A Mammal Brain for feelings

- I LIKE math; I DISLIKE math
- A Human Brain for information, language & thinking
- Total after *n* times adding *a*\$: *T* = *b* + *a* x *n*
- Total after *n* times adding *r*% : *T* = *b* x (1+*r*)^*n* = *b* x (1+*R*)
- Total after *n* times adding *a*\$ & *r*% : *T/a* = *R/r*


Our two Language Houses have two Floors


The WORD-language assigns words in sentences with	• a subject
	• a verb
The NUMBER-language assigns numbers instead with	• a predicate

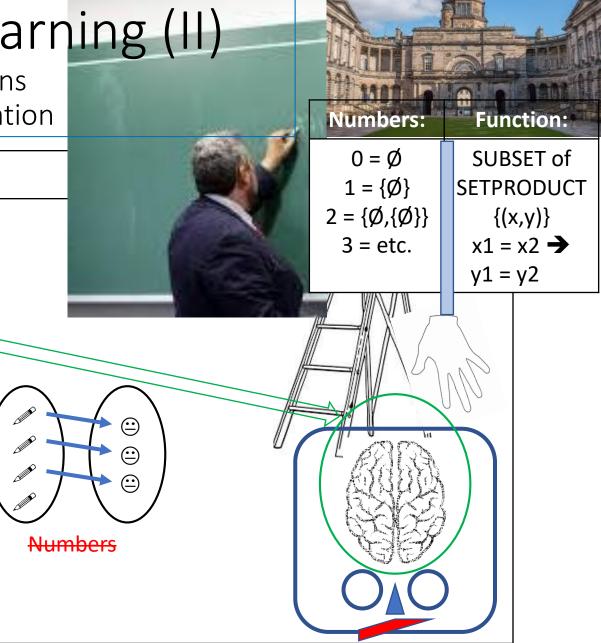
Both languages have a META-language, a grammar, describing the language, that is learned before the grammar in the word-language, but in the number-language grammar is first.

A Brain adapts through Stimuli & Response OUTSIDE Stimulus ▶ ◀◀ INSIDE Response

Inside-Inside Vygotsky-learning (II)

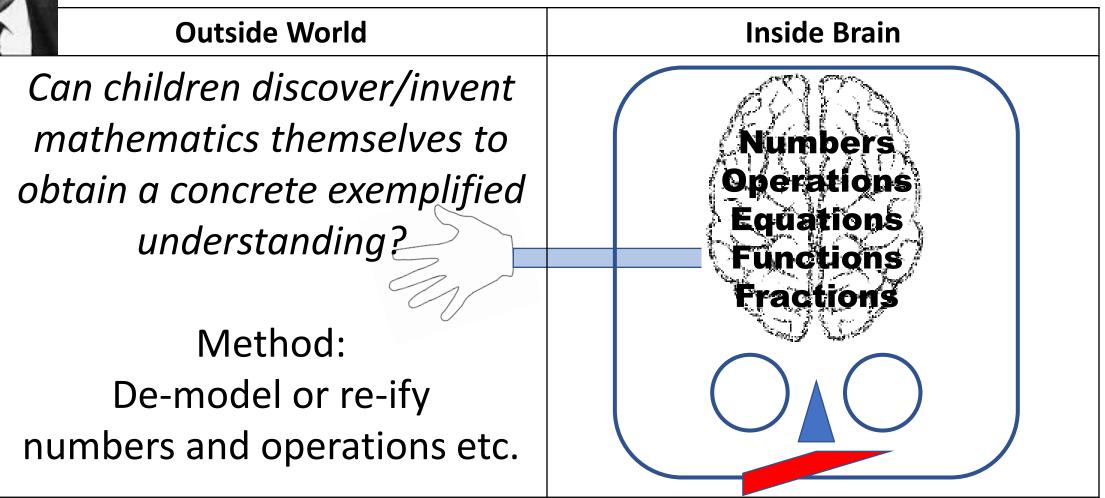
A major Brain teaches (colonizes?) minor Brains abstract TopDown Understanding & Enculturation

Bruner & Skemp & Vygotsky


School subjects must mirror university subjects to structure a good teaching, providing a scaffolding as the ladder down to the learners 'Zone of Proximal Development' (ZPD, Vygotsky).

To understand numbers, first you must understand understanding; then cardinality as equivalence classes in the set of sets. So children first draw arrows between sets to learn number-names.

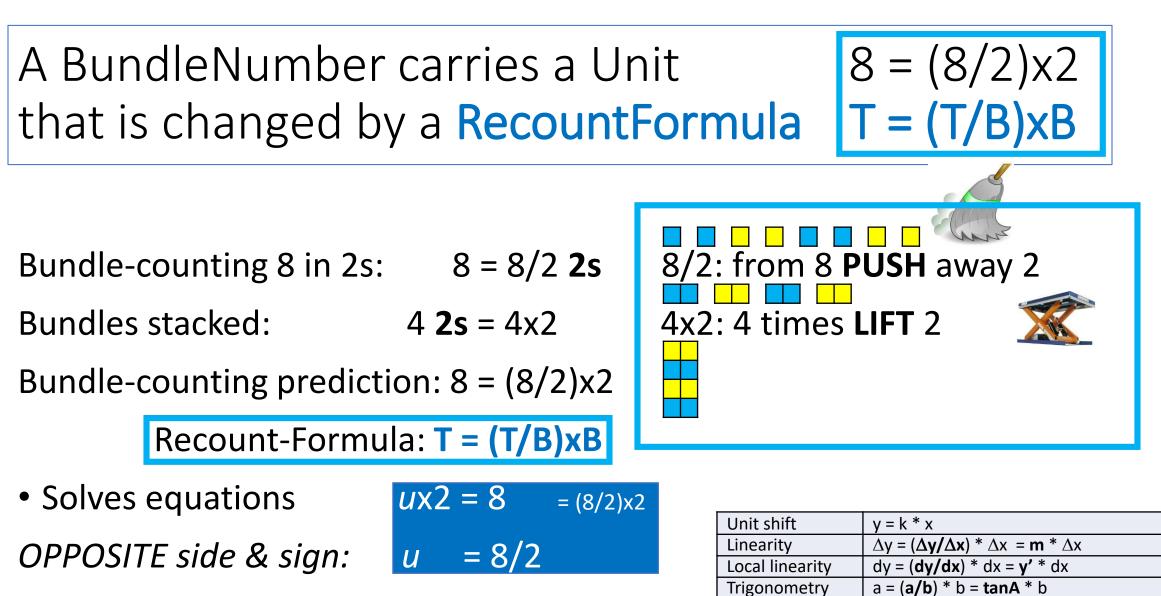
"What a child can do today with assistance, she will be able to do by herself tomorrow". So, good teaching by a more knowledgeable other matters. So does good teacher education and good Professional Development.


Outside-Inside Piaget-learning (III)

Peer-Brains teach eaxh other Bottom-up Understanding through concrete Examples provided by Guiding Teachers

Ť		Outside Wor	ld	Inside Brain			
Oper	ibers, ations <i>nual</i>	Functions are Sentences verbal	Validate	 Schem Assimi 	ate 🕺	you	
	M	T = 2+3 No T = 2+? Yes	Resistance	Accorr		ne, she, it we you	
we ke	"Every time we teach a child something, we keep him from inventing it himself. On the other hand, that which we allow					they	
him to	o disco	ver for himself ible for the res	f will remain	Research: Grounded ⁻ Collective S	· · ·		

Research Question


DeModel Digits as Icons

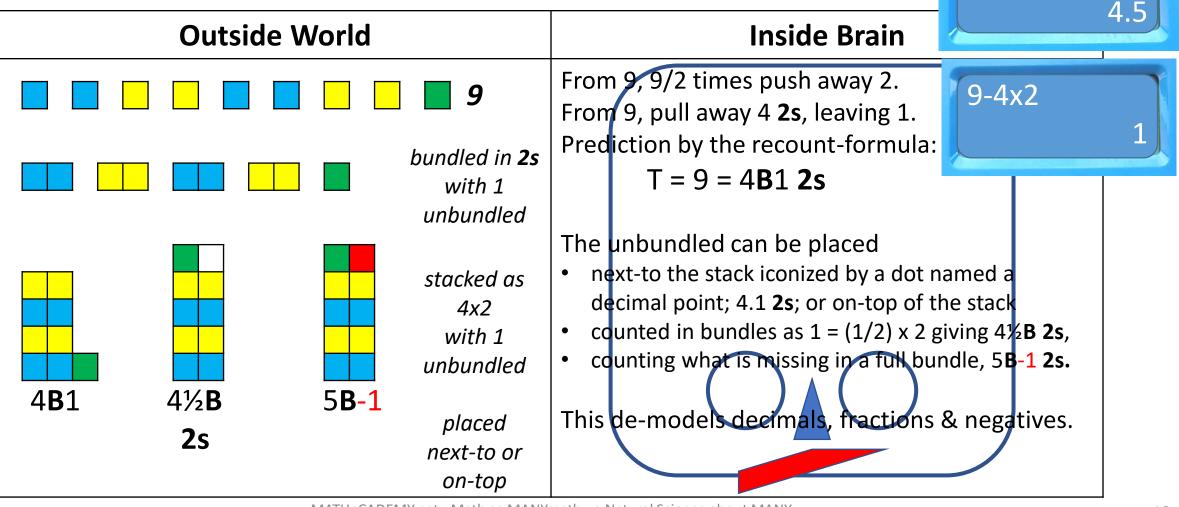
with as Many Sticks as they Represent: 4 Sticks in the 4-lcon etc.

	Outsid	e World		Inside Brain
1	II II	I III	11111	What? Digits are icons with as many
				sticks as they represent!
1	2 3	· · · · · · · · · · · · · · · · · · ·	5	But, why does ten not have an icon?
				Oh, it is a Bundle , so ten is 1 Bundle 0.
				So eleven is 1 B 1, and twelve is 1 B 2.
				Ah, the Vikings liked to shorten:
				1 B 1 became 1-left (one-leven),
6	7	8	9	1B2 became 2-left (two-leven).

DeModel Division & Multiplication & Subtraction & Addition as Icons also

- From 9 **PUSH** away **4s** we write <u>9/4</u> <u>iconized</u> by a broom, called *division*.
- 2 times **LIFTING** the **4s** to a stack we write <u>2x4</u> <u>iconized</u> by a lift called *multiplication*.
- From 9 PULL away 2 4s' to find un-bundled we write <u>9 2x4</u>
 iconized by a rope, called *subtraction*.
- UNITING next-to or on-top we write A+C iconized by two directions, called *addition*.

\$ = (\$/kg) * kg = price * kg

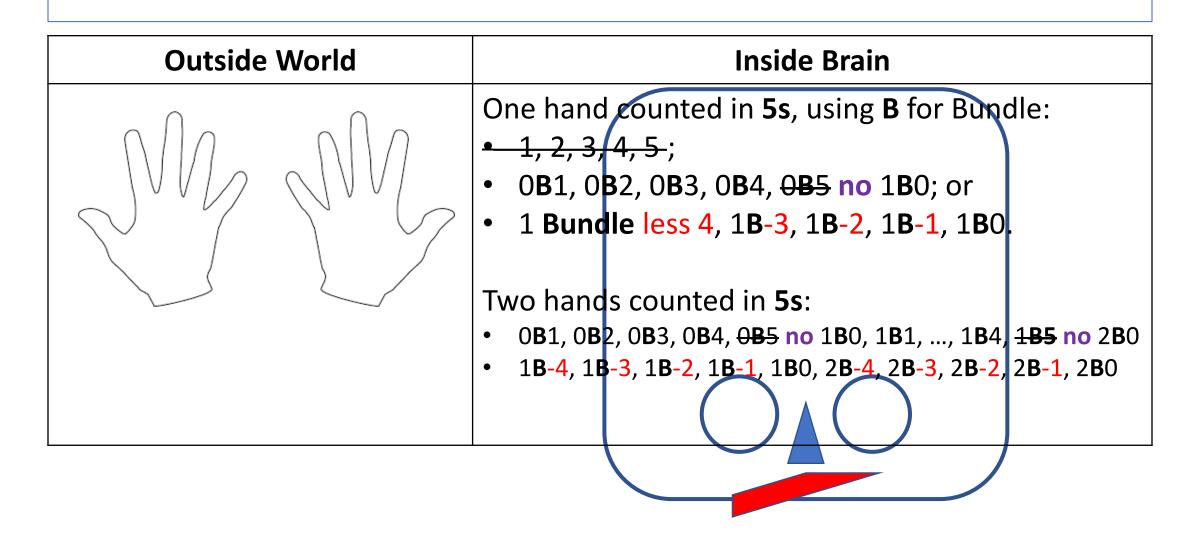

kg = (kg/m^3) * m^3 = density * m^3 meter = (meter/sec) * sec = speed * sec

Joule = (Joule/sec) * sec = watt * sec Joule = (Joule/kg) * kg = heat * kg

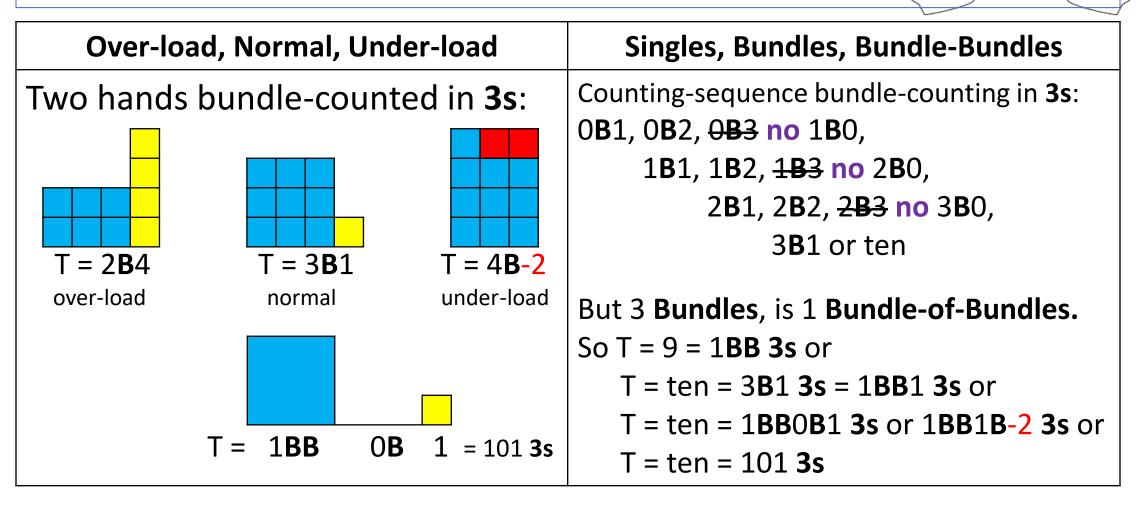
Trade

STEM

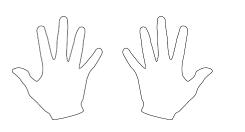
• Is all over Science, Technology, Engineering, Math:


9/2

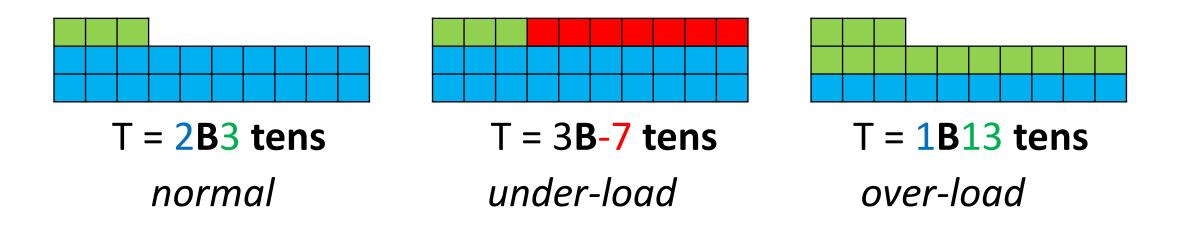
9 - 4x2


9/2

4.some


BundleCounting Fingers in 5s

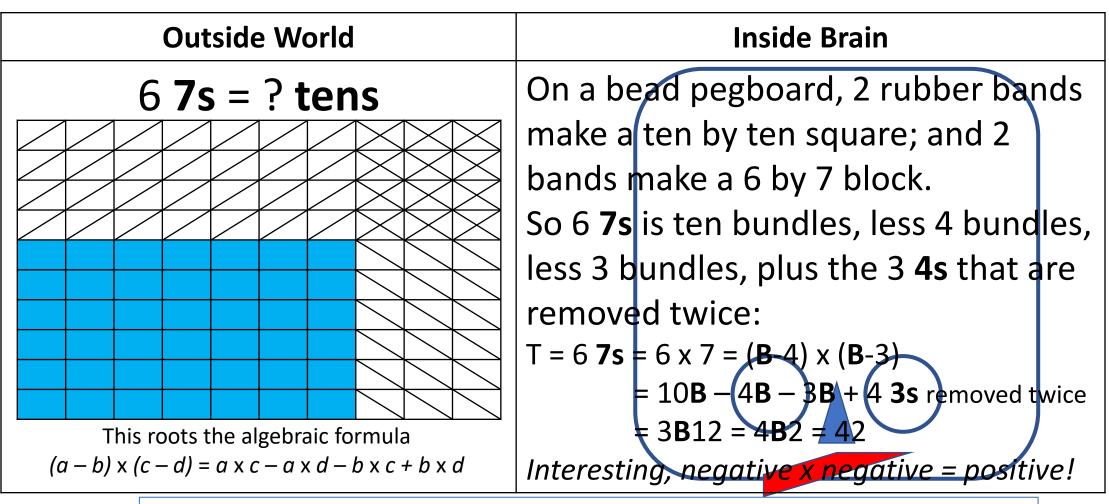
BundleCounting Fingers in 3s


BundleCounting Fingers in 2s

1	1	1	1					-	This can be shown
2	1 B 0	10	В						with Lego bricks
3	1 B 1	11							naving different
4	1 BB 00	100	BB						colors: a green 2-brick is B
5	1 BB 01	101							a blue 4-brick is BB
6	1 BB 1 B 0	110							a red 8-brick is BBB
7	1 BB 1 B 1	111							
8	1 BBB 000	1000	BBB						
9	1 BBB 001	1001							
Ten	1 BBB 01 B 0	1010							

Counting in Tens with UnderLoad & OverLoad

Q: Where to put the unbundled singles with tens? Counting in tens, an outside Total of 2 **tens** + 3 can be inside described as T = 2.3 **tens**, or as 23 if leaving out the unit; or as



Recounting into Tens: Multiplication Tables The Small Table from 2 to 5

Outside World					Inside Brain		
Count in	1	2	3	4	5	The small table comes from using hands and fingers.	
2 s	2	4	6	8	1 B 0	With 2s , a finger counts 1.	
3s	3	6	9	1 B 2	1 B 5	With 3s , a finger counts 3.	
4s	H-1 4	B-2 8	BH-3 1 B 2	BB-4 1 B 6	BB 2 B 0	With 4s , 4 is a H and less 1, 4 = $H-1$ With 5s , 5 is a H and with $2H = 1B$.	
5s	H 5	B 1 B 0	BH 1 B 5	BB 2 B 0	BBH 2 B 5		

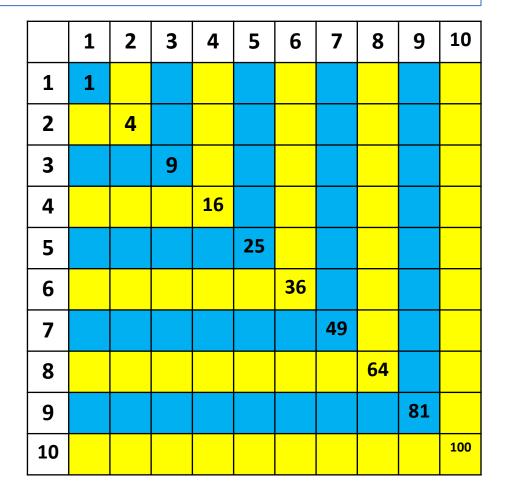
MATHeCADEMY.net

Recounting into Tens: Multiplication Tables The Big Table until Ten

6 x7 gives the less-numbers 4 & 3. So from tens we subtract the sum, and add the product.

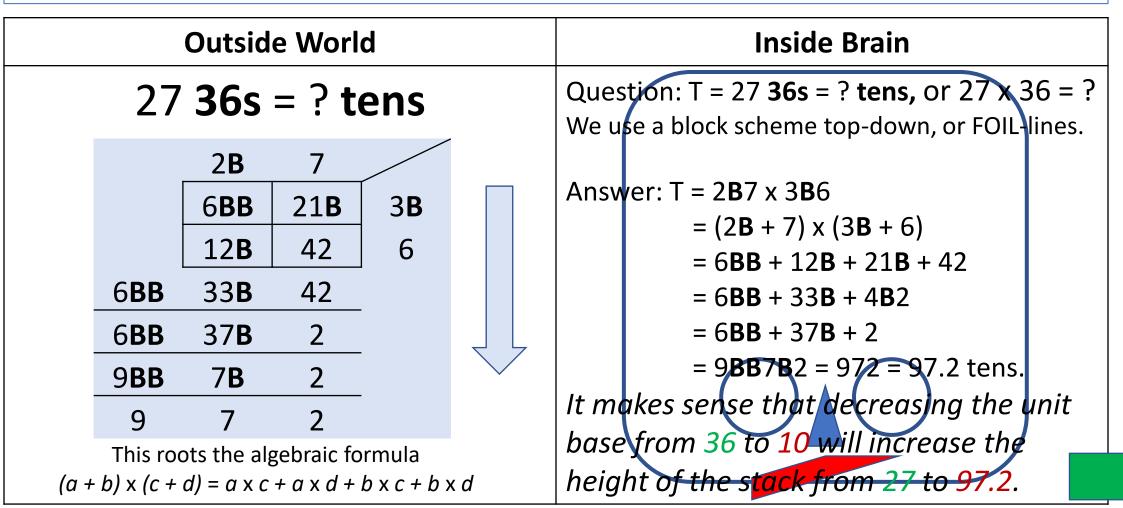
Recounting BundleBundles in Tens (Squares: ..., 4 **4s** = ? **tens**, 5 **5s** = ? **tens**, ...)

Using the multiplication table, we recount the different bundle-bundles (called squares) in **tens**:


S4 = 4 **4s** = 4x4 = 16

S5 = 5 **5s** = 5x5 = 25, etc.

We see that to get to the next square we add the sides twice, + 1:


 $(n+1)^{*}(n+1) = n^{*}n + 2^{*}n + 1$, or

 $(n+1)^2 = n^2 + 2^*n + 1$

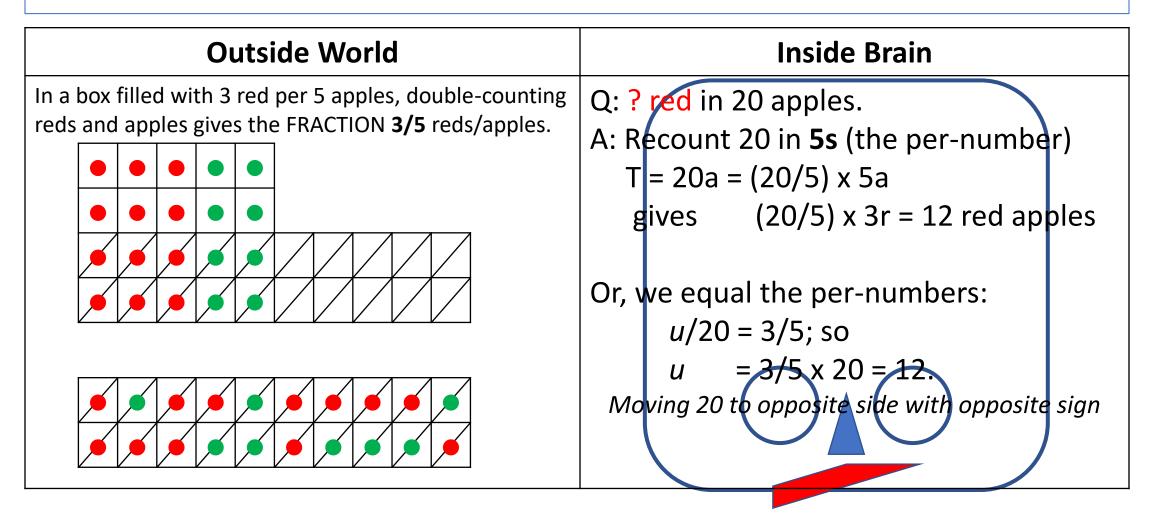
Recounting Large Numbers into Tens: Block Schemes or **FOIL**-lines

Recounting Large Numbers into Icons: Reversing Block Schemes or FOIL-lines

Outside World					Inside Brain			
16.8 tens = ? 7s					Question: 16.8 tens = ? 7s ; or 168 /7 = ? We use a block scheme bottom-up, or			
		7 14 B	? = 2 B		reverse the FOIL-lines. Answer: 168 = 16 B 8 = 14 B 28 = 7 x 2 B 4 = 7 x 24 = 24 7s			
	14 B 16 B	28 28 8	? = 4		Question: 16.9 tens = ? 7s ; or 169 /7 = ? 169 = 16 B 9 = 14 B 29 = 14 B 28 + 1 = 7 x 2 B 4 + (1/7) x 7			
1	6	8			= 7 x (24+1/7) = 24 1/7 7s It makes sense that decreasing the unit base from 10 to 7 will increase the height of the s <mark>tack from 16.8 to 24</mark> .			

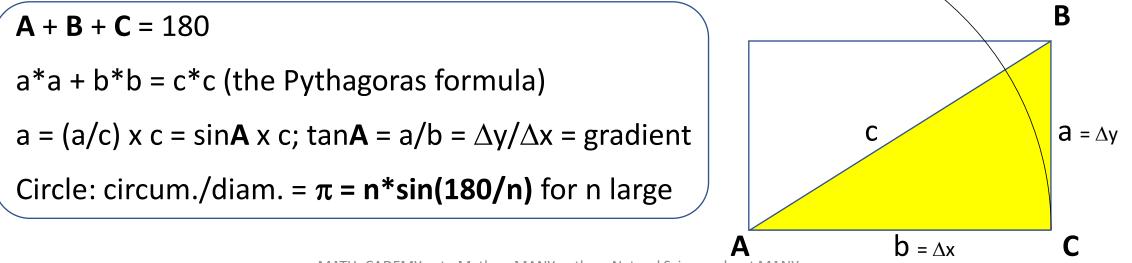
DoubleCounting gives PerNumbers Bridging Units

Outside World	Inside Brain		
On a 2x4 brick, double-counting rows and dots gives the per-number 2 rows per 8 dots, or 2r/8d or 2/8 r/d.	Q: 6 rows = ? dots. A: recount 6 in the per-number 2. $T = 6r = (6/2) \times 2r$ $= (6/2) \times 8d = 24dots$		
	Q: ? rows = 56 dots? A: recount 56 in the per-number 8. $T = 56d = (56/8) \times 8d$ $= (56/8) \times 2r = 14rows$		

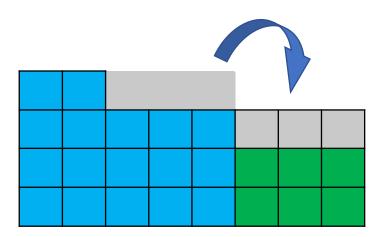

DoubleCounting in two Units creates Ave PerNumbers & Proportionality

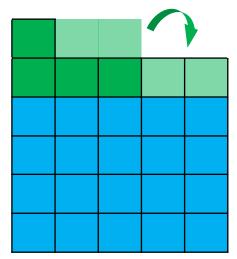
DoubleCounting in kg & \$, we get a **PerNumber** 4kg **per** 5\$ = 4kg/5\$ = 4/5 kg/\$.

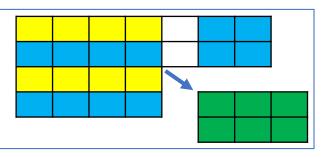
With 4kg bridged to 5\$, we recount in the per-number. Or we recount the units directly. Or we equate the per-numbers. Or we use the before 1900 'Rule of 3' (regula de tri) alternating the units, and, from behind, first multiply, then divide. Questions:


12kg = ?\$	20\$ = ?kg
$12kg = (12/4) \times 4kg$	20\$ = (20/5) x 5\$
$= (12/4) \times 5$ = 15	= (20/5) x 4kg = 16kg
\$ = (\$/kg) x kg = 5/4 x 12 = 15	kg = (kg/\$) x \$ = 4/5 x 20 = 16
u/12 = 5/4, so u = 5/4 x 12 = 15	<i>u</i> /20 = 4/5, so <i>u</i> = 4/5 x 20 = 16
If 4kg is 5\$, then 12kg is ?\$; answer: 12x5/4 = 15	If 5\$ is 4kg, then 20\$ is ?kg; answer: 20x4/5 = 16

With like Units, PerNumbers become Fractions, both Operators Needing Numbers to Become Numbers


DoubleCounting the Sides in a Block


Geometry means to measure earth in Greek. The earth can be divided in triangles; that can be divided in right triangles; that can be seen as <u>a block halved by its</u> <u>diagonal</u> thus having three sides: <u>the base b</u>, <u>the height a</u> and <u>the diagonal c</u> connected by the Pythagoras formula. And connected with the angles by per-number formulas double-counting the sides pairwise.


Counted & Recounted, Totals may be Added

BUT: NextTo		or	OnTop	
4 5 s + 2	2 3s = 3 B 2 8s	4 5 s	+ 2 3s = 4 5s + 1B1 5s = 5B1 5s	
The areas are integrated		The units are changed to be the sa		
Adding areas = Integration		Change unit = Proportionality		

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

"If T1 = 2 3s and T2 add next-to as 4 7s, what is T2?"

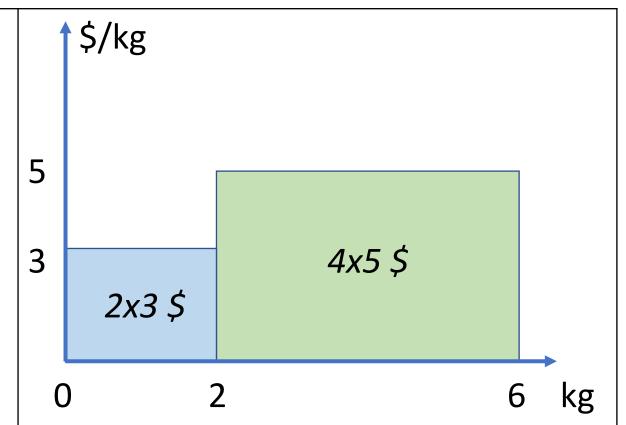
<u>Outside</u>, we remove the initial block T1 and recount the rest in **4s**. Thus reversed next-to addition geometrically means subtracting areas. Reversed next-to addition is also called differential calculus. <u>Inside</u>, the recount formula algebraically predicts the result. Here subtraction precedes division; which is natural as reversed integration.

(4x7 – 2x3)/4 5.some (4x7 – 2x3) – 5x4 2

Reversed Addition = Solving Equations

OppoSite Side	NextTo	
2 x ? = 8 = (8/2) x 2	2 + ? = 8 = (8-2) + 2	2 3s + ? 5s = 3.2 8s
? = 8/2	? = 8-2	? = (3.2 8s – 2 3s)/5
Solved by ReCounting	Solved by ReStacking	Solved by differentiation: $(T-T1)/5 = \Delta T/5$

Hymn to Equations

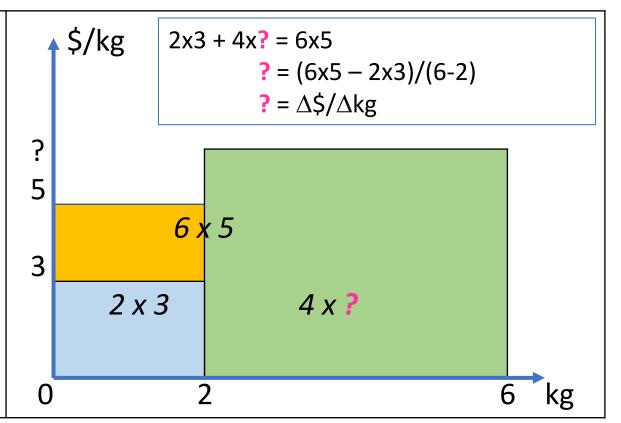

Equations are the best we know, they are solved by isolation. But first, the bracket must be placed around multiplication. We change the sign and take away and only x itself will stay. We just keep on moving, we never give up. So feed us equations, we don't want to stop!

Adding PerNumbers as Areas (Integration)

"2kg at **3\$/kg** + 4kg at **5\$/kg** = 6kg at **? \$/kg**?"

2 kg at **3 \$/kg** + 4 kg at **5 \$/kg** (2+4) kg at **? \$/kg**

- Unit-numbers add on-top.
- Per-numbers must be multiplied to unit-numbers, thus adding as **areas** under the per-number graph.
- Here, multiplication before addition


Subtracting PerNumbers (Differentiation)

"2kg at 3\$/kg + 4kg at what = 6kg at 5\$/kg?"

2 kg at 3 \$/kg + 4 kg at ? \$/kg 6 kg at 5 \$/kg

Outside, we remove the initial 2x3 block and recount the rest in 4s. Geometrically, reversed per-number addition means subtracting areas to be reshaped, called differential calculus.

Inside, the recount-formula algebraically predicts the result. Here subtraction (giving a change, Δ) comes before division.

Flexible BundleNumbers Ease Operations

Over-load and under-load come in handy:

$$T = 65 - 27 = 6B5 - 2B7 = 4B - 2 = 3B8 = 38$$

- T = 7 x 48 = 7 x 4**B**8 = 28**B** 56 = 33**B**6 = 336
- T = 336 /7 = 33**B**6 /7 = 28**B**56 /7 = 4**B**8 = 48
- T = 336 /7 = 33**B**6 /7 = 35**B**-14 /7 = 5**B**-2 = 48

Adding or Subtracting Unspecified Numbers

"Only add like units, so how to add $T = 4ab^2 + 6abc$?" Here units come from folding (factoring): a factor-filter

- $T = 4ab^2 + 6abc = T1 + T2$
 - $= 2 \times 2 \times a \times b \times b + 2 \times 3 \times a \times b \times c$
 - $= 2 \times b \times (2 \times a \times b) + 3 \times c \times (2 \times a \times b)$
 - = 2b **2ab**s + 3c **2ab**s
 - = 2b+3c **2ab**s
 - = (2*b*+3*c*) x **2***ab*

T1	2	2	а	b	b
T2	2	3	а	b	С
unit	2		a	b	
T1 left		2			b
T2 left		3			С

Conclusion

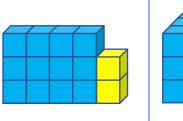
We ask: Can children discover/invent mathematics themselves to obtain a concrete exemplified understanding?

The answer is YES, if we

- de-model digits as icons with as many sticks as they represent
- use the flexible bundle-numbers with units that children develop when adapting to Many
- de-model operations as means for bundle-counting 8 as 8/2 2s, leading directly to the recount-formula T = (T/B) x B, used to change units, and to
- solve equations as 'How many 2s in 8?' by recounting 8 in 2s
- ux2 = 8 = 8/2x2 so u = 8/2
- use double-counting to construct per-numbers, fractions and trigonometry
- add both next-to and on-top, so calculus becomes addition of per-numbers

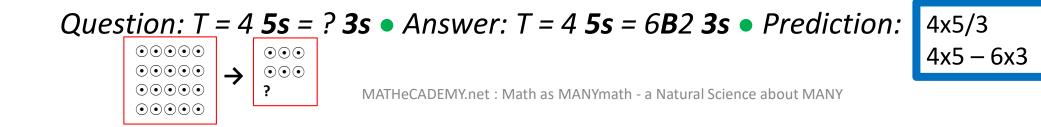
Core Findings

- Digits are icons with as many sticks as they represent
- Operations are icons created by counting: Division is a broom pushing away bundles; multiplication is a lift stacking the bundles; subtraction is a rope pulling away the stack to find unbundled; and addition is a choice between uniting stacks on-top or next-to
- Recounting predicted by the recount-formula **T** = (**T**/**B**)**xB** makes factors units
- Equations are solved by moving to opposite site with opposite sign
- Double-counting creates per-numbers or fractions adding with units as calculus
- Using also in the number-language full sentences with a subject, a verb and a predicate allows modeling to take place from grade 1, so totals carry units always


Discussion: What is the Difference?

		Traditional Math	Adaptive Green Math
Digits	4	Symbol	Icon with four strokes
Numbers	456	One number	Three numberings, 4 BB 5 B 6
Division	8/2	8 split in 2	8 counted in 2s
Multiplication	6 x 7	42	6 7s with 7 as a unit (or 4 B 2 tens)
Addition	2+3	2+3 = 5	2 4s + 3 5s = 2 B 3 9s 2 4s + 3 5s = 4 B 1 5s
Equations	3 x <i>u</i> = 12	Neutralize $(3 \times u) \times 1/3 = 12 \times 1/3$ $(u \times 3) \times 1/3 = 4$ $u \times (3 \times 1/3) = 4$ $u \times 1 = 4$ u = 4	Opposite side & sign u x 3 = 12 = (12/3) x 3 u = 12/3 = 4
Fractions	2/3	Numbers 1/2 + 2/3 IS 7/6	Per-numbers, i.e. operators, needing numbers to become numbers: 1/2 of 2 + 2/3 of 3 IS 3/5 of 5

Children typically see Many as blocks with a number of bundles, and use flexible bundle-numbers with units, and with over- or underloads


So, in green ManyMath, BLOCKS are fundamental:

- in numbers: 456 = 4**BB**5**B**6 = three blocks
- in algebra: adding blocks next-to or on-top
- in geometry: recounting half-blocks

1) Digits are (sloppy) icons, with as many sticks as they represent.

- 2) Totals are counted by bundling, giving <u>outside</u> geometrical multi-blocks,
 & (when turned to hide the units behind) <u>inside</u> algebraic bundle-numbers.
- 3) Operations are icons, showing the 3 counting steps: Pushing & stacking bundles & pulling stacks to find the unbundled.
- 4) The operation order is division first, then multiplication, then subtraction. Addition next-to & on-top comes later after totals are counted & re-counted.
- 5) Counting & re-counting & double-counting is big fun, when predicted by a calculator with the recount formula: **T** = (**T**/**B**)**xB** (from T, T/B times, Bs are pushed away)

6.some

Solving Equations BottomUp or TopDown

ManyMath

2 + u = 5 = (5-2) + 2	Solved by re-stacking 5	2 x u = 5 = (5/2) x 2	Solved by re-bundling 5
u = 5-2 = 3	Test: 2 + 3 = 5 OK	$u = 5/2 = 2\frac{1}{2}$	Test: 2 x 3 = 6 OK

MatheMatics

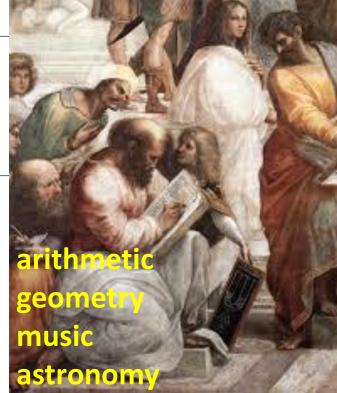
	2 + u = 5	Addition has 0 as its neutral element, and 2 has -2 as its inverse element	
↓ ↓	(2 + u) + (-2) = 5 + (-2)	2) Adding 2's inverse element to both number-names	
\downarrow	(u + 2) + (-2) = 3Applying the commutative law to u + 2, 3 is the short number-name for 5u + (2 + (-2)) = 3Applying the associative law		
\downarrow	u + (2 + (-2)) = 3	Applying the associative law	
\downarrow	u + 0 = 3	Applying the definition of an inverse element	
\mathbf{V}	u = 3	Applying the definition of a neutral element. With arrows, a test is not needed	

Four Ways to Unite and Split a Total

A number-formula T = 345 = 3**BB**4**B**5 = 3***B**^2 + 4***B** + 5 (a polynomial) shows the 4 ways to add: +, *, ^, next-to block-addition (integration). <u>Addition</u> and <u>multiplication</u> add changing and constant unit-numbers. <u>Integration</u> and <u>power</u> add changing and constant per-numbers.

We might call this beautiful simplicity the 'Algebra Square' since in Arabic, algebra means to reunite.

Operations unite / <i>split into</i>	changing	constant
Unit-numbers	T = a + n	T = a * n
m, s, \$, kg	T-a=n	<i>T/n = a</i>
Per-numbers	T =∫a dn	T = a^n
m/s, \$/kg, m/(100m) = %	dT/dn = a	$log_a T = n, n \sqrt{T} = a$


The 4 uniting operations each has a reverse splitting operation: Addition has <u>subtraction</u> (–), and multiplication has <u>division</u> (/). Power has factor-finding (<u>root</u>, \vee) and factor-counting (<u>logarithm</u>, log). Integration has per-number finding (<u>differentiation</u> dT/dn = T'). Reversing operations is solving equations, done by moving to **opposite side** with **opposite sign**.

Defining Mathematics BottomUp

Pythagoras: mathematics, meaning knowledge,

is a common label for 4 areas describing Many

by itself and in space & time.

Together they formed the 'quadrivium' recommended by Plato as a general

curriculum after the 'trivium' consisting of grammar & logic & rhetoric.

Grounded in Many as shown by names: Geometry means to measure earth in Greek

Algebra means to reunite numbers in Arabic

Defining Mathematics TopDown

Around 1900, SET made mathematics self-referring. However, Russell said: Self-reference leads to the classical liar paradox 'this sentence is false', being false if true & opposite. Let M be the set of sets not belonging to itself, $M = \{A | A \notin A\}$. Then $M \in M \Leftrightarrow M \notin M$. Forget about sets. Use type theory instead. So, by self-reference, fractions cannot be numbers. Mathematics: Forget about Russell, he is not a mathematician. Of course fractions are numbers, they are rational numbers.

Three Kinds of Mathematics

- Mathematics becomes mathe-matism when adding without units, thus only valid inside, but seldom outside classrooms where 2+3 = 5 meets counter-examples as 2weeks + 3days = 17days, in contrast to 2x3 = 6 stating that 2 3s may be recounted as 6 1s.
- Mathematics becomes meta-matics when defining concepts from above as examples of abstractions, instead of from below as abstractions from examples.
- Mathematics becomes adaptive many-math when accepting the double-numbers children develop when adapting to Many: bundle-numbers in primary and per-numbers in secondary school

Three Kinds of Mathematics Education

- Pre set-centric mathe-matism rejects set-centrism as too abstract and goes back to basic traditions resting heavily on root learning, thus using Skinner psychology
- Present set-centric **meta-matics** defining concepts as examples of set is used more or less all over the world, except in the US. Its definitions become abstract self-reference without meaning forcing learners to construct their own meaning by Vygotskian social constructivism
- Post set-centric adaptive many-math defines concepts as abstractions from concrete examples, thus becoming a natural science about Many and using Piaget psychology

Recommendation: Learners should be Researchers, Extending their already existing Adaption to Many

- To survive, also math must adapt to the outside world . So it should adopt the double-numbers children develop before school; and accept fractions as per-numbers, both operators needing numbers to become numbers.
- Hence to survive math must learn from children, not the other way around.
- Designing a micro- or macro-curriculum we should always ask: What is it out there that the learners need to adapt to?
- When adapting, learners should use grounded theory to answer the guiding learning questions listed in the curriculum.
- Teaching should be minimized to supplying concrete material and extra guiding questions, and to be opponents on the learners' findings.

Question Guided Teacher Education

MATHeCADEMY.net

Teaches Teachers to Teach MatheMatics as ManyMath, a Natural Science about MANY.

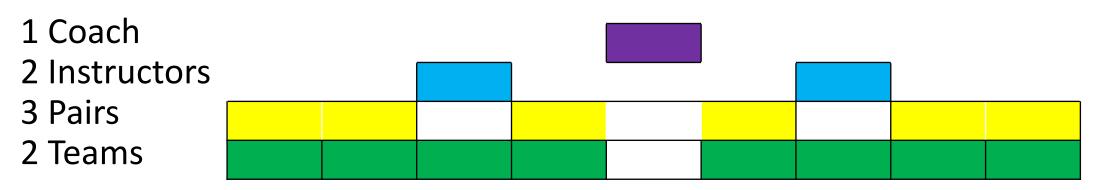
- To learn Math, Count & Add MANY, using the CATS method:
 - Count & Add in Time & Space
 - Primary: C1 & A1 & T1 & S1
 - Secondary: C2 & A2 & T2 & S2

MATHeCADEMY.net a VIRUSeCADEMY: ask Many, not the Instructor

	QUESTIONS	ANSWERS
Cl	How to count Many?	By bundling and stacking the total T predicted by $T = (T/b)*b$
COUNT	How to recount 8 in 3s: $T = 8 = ?$ 3s	T = 8 = ?*3 = ?3s, $T = 8 = (8/3)*3 = 2*3 + 2 = 2*3 + 2/3*3 = 22/3*3$
	How to recount 6kg in \$: T=6kg=?\$	If $4kg = 2$ \$ then $6kg = (6/4)*4kg = (6/4)*2$ \$ = 3\$
	How to count in standard bundles?	Bundling bundles gives a multiple stack, a stock or polynomial:
		$T = 423 = 4BundleBundle+2Bundle+3 = 4tenten2ten3 = 4*B^{2}+2*B+3$
C2	How can we count possibilities?	By using the numbers in Pascal's triangle
COUNT	How can we predict unpredictable	We 'post-dict' that the average number is 8.2 with the deviation 2.3.
	numbers?	We 'pre-dict' that the next number, with 95% probability, will fall in the
		confidence interval 8.2 ± 4.6 (average ± 2 *deviation)
A1	How to add stacks concretely?	By restacking overloads predicted by the restack-equation T= (T-b)+b
ADD	T=27+16= 2ten7+1ten6= 3ten13=?	T = 27+16 = 2 ten 7+1 ten 6 = 3 ten 13 = 3 ten 1 ten 3 = 4 ten 3 = 43
	How to add stacks abstractly?	Vertical calculation uses carrying. Horizontal calculation uses FOIL
A2	What is a prime number?	Fold-numbers can be folded: 10=2fold5. Prime-numbers cannot: 5=1fold
ADD	What is a per-number?	Per-numbers occur when counting, when pricing and when splitting.
	How to add per-numbers?	The \$/day-number a is multiplied with the day-number b before added to
		the total $-number T: T2 = T1 + a*b$
T1	How can counting & adding be	By calculating backward, i.e. by moving a number to the other side of the
TIME	reversed ?	equation sign and reversing its calculation sign.
	Counting ? 3s and adding 2 gave 14.	x*3+2=14 is reversed to $x = (14-2)/3$
	Can all calculations be reversed?	Yes. x+a=b is reversed to x=b-a, x*a=b is reversed to x=b/a, x^a=b is
		reversed to x=a√b, a^x=b is reversed to x=logb/loga
T2	How to predict the terminal number	By using constant change-equations:
TIME	when the change is constant?	If Ko = 30 and $\Delta K/n = a = 2$, then K7 = Ko+a*n = 30+2*7 = 44
		If Ko = 30 and $\Delta K/K = r = 2\%$, then K7= Ko*(1+r)^n= 30*1.02^7= 34.4
	How to predict the terminal number	By solving a variable change-equation:
	when the change is variable, but	If Ko = 30 and dK/dx = K', then $\Delta K = K - Ko = \int K' dx$
S1	predictable? How to count plane and spatial	By using a rular, a protractor and a triangular shape
SPACE	properties of stacks and boxes and	By using a ruler, a protractor and a triangular shape. By the 3 Greek Pythagoras', mini, midi & maxi
STACE	round objects?	By the 3 Arabic recount-equations: sinA=a/c, cosA=b/c, tanA=a/b
S2	How to predict the position of	By the 3 Arabic recount-equations: $\sin A - a/c$, $\cos A - b/c$, $\tan A - a/b$ By using a coordinate-system: If $Po(x,y) = (3,4)$ and if $\Delta y/\Delta x = 2$, then
SPACE	points and lines?	$P_1(8,y) = P_1(x+\Delta x, y+\Delta y) = P_1((8-3)+3, 4+2*(8-3)) = (8,14)$
	How to use the new calculation	$\Gamma_1(0,y) = \Gamma_1(x+\Delta x, y+\Delta y) = \Gamma_1((0-3)+3, 4+2, (0-3)) = (0,14)$ Computers can calculate a set of numbers (vectors) and a set of vectors
	technology?	(matrices)
QL	What is quantitative literature?	Quantitative literature tells about Many in time and space
Q.	Does quantitative literature also	The word and the number language share genres:
	have the 3 different genres: fact,	Fact is a since-so calculation or a room-calculation
	fiction and fiddle?	Fiction is an if-then calculation or a rate-calculation
	netion and nutle:	Fiddle is a so-what calculation or a risk-calculation
		risale is a so-mat calculation of a fisk-calculation

SUMMARY

Teacher Training in **CATS** ManyMath Count & Add in Time & Space

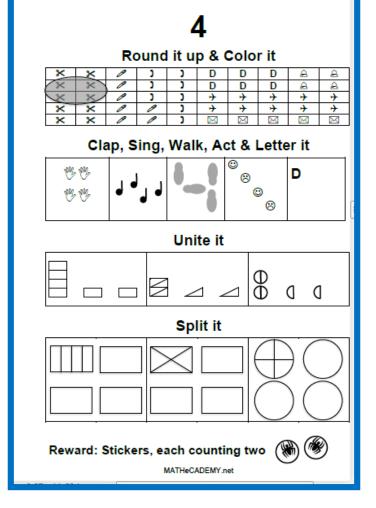

DUNT1.pdf - Adobe Reader	odf - Adobe Reader 🗖 🔲 🔀	IME1.pdf - Adobe Reader
Edit View Window Help *	: View Window Help 🗶	Edit View Window Help *
/ 4 50% ▼ Fill & Sign Comment	50% ▼ Fill & Sign Comment	1 / 5 50% ▼ ▼ Fill & Sign Comment
<text></text>	ADDING MANY Associated by the set of the set	<text></text>
GRASP by grasping - the LAB approach MATHeCADEMY.net	GRASP by grasping - the LAB approach MATHeCADEMY.net 8,27 x 11,69 in	GRASP by grasping - the LAB approach MATHeCADEMY.net 8.27 x 11.70 in

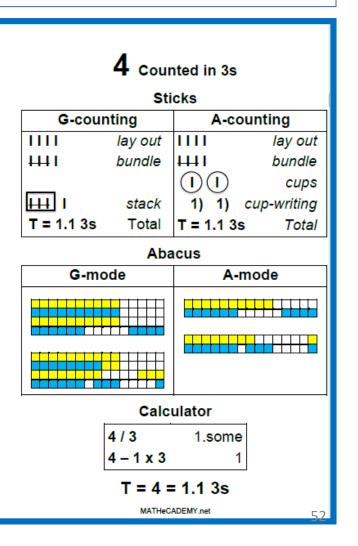
PYRAMIDeDUCATION

To learn MATH: Count&Add MANY Always ask Many, not the Instructor MATHeCADEMY.net - a VIRUSeCADEMY

In PYRAMIDeDUCATION a group of 8 teachers are organized in

- 2 teams of 4 choosing 2 instructors and 3 pairs by turn.
- Each pair works together to solve Count&Add problems.
- The coach assists the instructors when instructing their team and when correcting the Count&Add assignments.
- Each teacher pays by coaching a new group of 8 teachers.

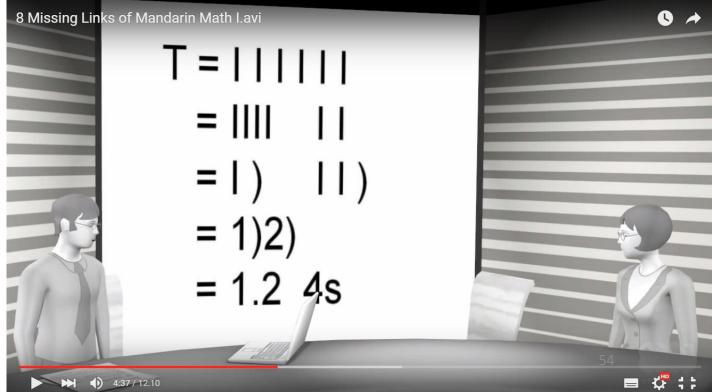

Action Learning and Research Materiel at <u>mathecademy.net/ & mathecademy.net/preschool/</u>


ReCount don't Add

MatheMatics as ManyMatics for NewComers & LateComers & Migrants to Avoid DysCalCulia

The Direct Way to Core Mathematics: Proportionality & Fractions & Calculus & Solving Equations

> Allan.Tarp MATHeCADEMY.net



Quadratic Equations with 3 Cards

Solve the quadratic equation $u^{2} + 6u + 8 = 0$ $(u+3)^2 = u^2 + 6u + 8 + 1$ $(u+3)^2 =$ 0 + 1 3 8 $u+3 = \pm 1$ $u = -3 \pm 1$ U Solution: **u** = -4, **u** = -2 3 U

MrAlTarp YouTube Videos

- Postmodern Mathematics Debate
- CupCounting removes Math Dislike
- IconCounting & NextTo-Addition
- PreSchool Mathematics
- Fractions
- PreCalculus
- Calculus
- Mandarin Mathematics
- World History

Theoretical Background

Tarp, A. (2018). Mastering Many by counting, recounting and double-counting before adding on-top and next-to. *Journal of Math Education, March 2018, 11*(1), 103-117.

