Wrong Numbers

LineNumbers with place values 😕

IconNumbers BundleNumbers PerNumbers

Respect & Develop Kids' own Flexible BundleNumbers with Units

T is 48 No: T is **4B8 = 3B18 = 5B-2**

Wrong Operations

8/2 is 8 split by 2 NO: 8/2 is 8 counted in 2s

- 5x8 is 40 NO: 5x8 is 58s
- 2 3s + 4 5s = ???

OnTop or NextTo

Wrong Math = Dislike

Numbers are lcons

5 sticks in the 5-icon etc.

Our two Language Houses have two Floors

The WORD-language assigns words in sentences with a subject, a verb & a predicate. The NUMBER-language assigns numbers instead.

Both languages have a META-language, a grammar, describing the language, that is learned before the grammar in the word-language, but not in the number-language.

Operations are Icons

From 9 PUSH away 2s we write <u>9/2</u> iconized by a broom, called *division*.

4 times LIFTING 2s to a stack we write <u>4x2</u> iconized by a lift called *multiplication*.

From 9 PULL away 4 2s' to find un-bundled we write 9 - 4x2 iconized by a rope, called *subtraction*.

UNITING next-to or on-top we write A+C <u>iconized</u> by two directions, called *addition*.

Flexible Bundle-Numbers

Overload Standard Underload

$\boldsymbol{1} \boldsymbol{1} \boldsymbol{1} \boldsymbol{1} \boldsymbol{1} \boldsymbol{1}$	=	#111	=	##1	=	$\tt \tt $	
5	=	1 B 3	=	2 B 1	=	3 B-1	2s
5	=	1.3	=	2.1	=	3. -1	2s
					=	2 1⁄2	2s

48 = 4B8 = 3B18 = 5B-2

T = 65 + 27 = ? = 6B5 + 2B7 = 8B12 = 9B2 = 92T = 65 - 27 = ? = 6B5 - 2B7 = 4B-2 = 3B8 = 38T = 7*48 = ? = 7*4B8 = 28B56 = 33B6 = 336T = 336/7 = ? = 33B6/7 = 28B56/7 = 4B8 = 48

The RecountFormula

Recounting a total T in B-bundles

Root: factor-finder & log: factor-counter

Used in STEM-formulas m = (m/s)*s = speed*sec \$ = (\$/h)*h = rate*hour

Ten-numbers Tables: recount to tens

T = 6 8 = 6*8= (B-4)*(B-2) = BB - 4B - 2B - 8 = 10B - 6B + 8 = 4B8 = 4.8 tens = 48

Per-numbers

DoubleCounting in kg & \$ gives a **Per-number 2\$/3kg**

 $\frac{8\$ = ?kg}{8\$ = (8/2) \times 2\$}$ = (8/2) × 3kg = 12kg $\frac{9kg = ?\$}{9kg = (9/3) \times 3kg}$ = (9/3) × 2\$ = 6\$

With like units, per-numbers are fractions: **2**\$/**3**\$ = **2**/**3**

STEM-formulas contain per-numbers coming from double-counting: m = (m/sec) * sec = speed * sec kg = (kg/m^3) * m^3 = density * m^3

Side-numbers

Recount sides in a box halved by its diagonal: Trigonometry

T = (T/B)*B a = (a/c)*c = sinA*c a = (a/b)*b = tanA*b π = n*sin(180/n) for n large

Addition is not Well Defined

Counted & Recounted, Totals may Add

	1		

Adding fractions and per-numbers: Calculus

2 kg	at	3 \$/kg
+ 4 kg	at	5 \$/kg
(2+4) kg	at	? \$/kg

Unit-numbers add on-top. Per-numbers add next-to as areas under the per-number graph:

4 Ways to Unite & Split

A number-formula $T = 345 = 3BB4B5 = 3*B^2+4*B+5$ (a polynomial) shows the four ways to add:

+, *, ^, next-to block-addition (integration)

Add & multiply add changing and constant unit-numbers.

Integrate & power add changing and constant per-numbers.

The 4 uniting operations have a reverse splitting operation:

Add has <u>subtract</u> (–), and multiply has <u>divide</u> (/).

Power has factor-find (<u>root</u>, $\sqrt{}$) and factor-count (<u>logarithm</u>, log).

Integrate has per-number find (<u>differentiate</u> dT/dn = T').

Reversing operations solve equations by moving to **opposite side** with **opposite sign**.

Operations unite / split into	changing	constant
Unit-numbers m, s, \$, kg	T = a + n <i>T - a = n</i>	T = a * n <i>T/n = a</i>
Per-numbers <i>m/s, \$/kg,</i> <i>m/(100m) = %</i>	T = ∫ a dn <i>dT/dn = a</i>	$T = a^n$ $log_a T = n, \ ^n \sqrt{T} = a$

We call this beautiful simplicity the 'Algebra Square' since in Arabic, algebra means to reunite.

Solving Equations

ManyMath: Recount

2 x u = 6 = (6/2) x 2	Solved by recounting 6
u = 6/2 = 3	Test: 2 x 3 = 6 OK

MatheMatics: Neutralize with Abstract Algebra

$\leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow$	2 x u = 6	Multiply has 1 as neutral element, and 2 has ½ as inverse element
	$(2 \times u)x\frac{1}{2} = 6x\frac{1}{2}$	Multiply 2's inverse element to both number-names
	(u x 2)x½ = 3	Apply the commutative law to ux2, 3 is the short number-name for $6x^{1/2}$
	u x (2x½) = 3	Apply the associative law
	u x 1 = 3	Apply the definition of an inverse element
	u = 3	Apply definition of a neutral element With arrows, a test is not needed

Quadratic Equations with 3 Cards

With unspecified numbers:

MATHeCADEMY.net

- Teaches Teachers to Teach MatheMatics as ManyMath, a natural science about Many
- Cures Math Dislike when counting fingers in flexible bundle-numbers
- YouTube videos

• Free 1day Skype Seminars IconNumbers • ReCounting 7 in 5s & 3s & 2s

