# **COUNTING MANY**

| Questions                                     | Answers                                                               |
|-----------------------------------------------|-----------------------------------------------------------------------|
| How to count Many?                            | By Bundling and stacking the total T, predicted by $T = (T/B)^*B$     |
| How to recount 7 in 3s, $T = 7 = ?$ 3s        | T = 7 = ?3s, T = 7 = (7/3)*3 = 2B1 3s = 2.1 3s = 2 1/3 3s = 32 3s     |
| How to recount 6 kg in $T = 6 \text{ kg} = ?$ | With the per-number 4kg per 2\$, $6kg = (6/4)*4kg = (6/4)*2$ \$ = 3\$ |
| How to count in standard bundles?             | Bundling bundles gives a multiple stack, a polynomial:                |
| How to count in standard bundles?             | $T = 423 = 4BundleBundle2Bundle3 = 4tenten2ten3 = 4*B^2+2*B+3$        |

## 01 MANY IN TIME AND SPACE

Question. How can repetition in time become Many in space?

Answer. By putting a finger to the throat and adding a stick or a stroke for each beat of the heart.

| Example    |                                                                    |
|------------|--------------------------------------------------------------------|
| Evonoico E | nd other examples of spatial representation of temporal repetition |

Exercise. Find other examples of spatial representation of temporal repetition.

## 02 MANY IS COUNTED IN BUNDLES

Question. How can we name Many?

Answer. By creating counting sequences naming the different degrees until the bundle allows starting over. **Examples**. Counting a dozen in 5s: 0B1, 0B2, 0B3, 0B4, 0B5 no 1B0; 1B1, ..., 1B5 no 2B0; 2B1, 2B2. Again, counting a dozen in 5s: 0B1, 0B2, 1Bless2, 1B-1, 1B0; 1B1, 1B2, 2B-2, 2B-1, 2B0; 2B1, 2B2. And in 3s: 0B1, 0B2, 0B3 no 1B0, 1B1, ..., 2B2, 2B3 no 3B0 no 1BB, 1BB1, 1BB2, 1BB3 no 1BB1B (110) **Exercise.** Count a dozen in 4s, 6s, 7s, and 2s. Eleven and twelve are Viking-numbers: 1left, 2left, 3ten, 4ten.

## 03 BUNDLES BECOME ICONS

**Ouestion.** How can we show the first degrees of Many? Answer. By iconising them to digits: change five ones to one fives to be rearranged as an icon, thus seeing that there are five strokes in the digit-icon 5 if written in less sloppy. Likewise, with the other digits. The Romans used the symbol X for the number ten. Instead, we say ten = 1 bundle and no unbundled = 1B0 = 10. Example: I Ш ш 111111111 3 5 7 q 1 2 6 8 Δ **Exercise.** Find other ways to build icons as above. What could be another name for 100, and for 1000?

## 04 MANY IS COUNTED AS A STACK PREDICTED BY A RECOUNT-FORMULA

**Question.** How can we count Many?

Answer. By bundling and stacking: line up the total, push away bundles, stack bundles, pull away the stack. Example. | | | | | | | -> || || || || or || || || || -> ||| ||| || or || || || || -> ||| ||| || or ... We count 8 in 2s by pushing away 2s, iconized by a division-broom /: 8 = (8/2)\*2 = 4\*2. Here 4 is the counter and 2 is the unit. With unspecified numbers we get a 'RECOUNT-FORMULA'  $\mathbf{T} = (\mathbf{T}/\mathbf{B})^*\mathbf{B}$  saving 'From the total T, T/B times, B taken away, and stacked', predicting recounting T in B-bundles. Division thus means recounting, not sharing, which is an application. Pushed away, bundles are stacked, iconized by a multiplication-lift x, often written as \*. Pulling the stack away to find unbundled is iconized by a subtractionrope –. Thus, the process 'from T pull away 4' may be iconized as 'T-4' and worded as 'T minus 4'. The 4 pulled away do not disappear, they are just put next-to so the original total T is split into two totals, one containing T-4 and the other containing 4 as predicted by the 'RESTACK-FORMULA' T = (T-B) + B. ||||||||||| -> ||||| -> ||||| 1111 = (9-4) + 4 = 5 + 4 9

Placed next-to the stack, the unbundled are reported as a decimal number,  $8 = 2B2 \ 3s = 2.2 \ 3s$ . Placed on-top the stack it is counted in bundles,  $2 = (2/3)^*3 = 2/3 \ 3s$ , reported as a fraction,  $T = 2 \ 2/3 \ B \ 3s$ . Or, if counting what is needed for an extra bundle, reported by a negative number,  $T = 3B-1 \ 3s = 3.-1 \ 3s$ .

| Examples                                                                                              |       |                                                |
|-------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|
|                                                                                                       | T = 3 | 3 4s = 3*4 (a stack)                           |
| Leftovers are placed next-to the stack as a stack of its own I   IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |       | 3B3 4s = 3.3 4s<br>nals separate the unbundled |

| Or the le | ftovers are placed  | l on-top and counted  | in 4s, $3 = (3/4)*4$ |        | $T = 3B3 4s = 3 \frac{3}{4} 4s$ |
|-----------|---------------------|-----------------------|----------------------|--------|---------------------------------|
| Or we co  | ount what is needed | ed to have an extra b | undle                |        | T = 4B-1 4s = 41 4s             |
|           |                     |                       |                      | 1111   |                                 |
|           | ->                  | ->                    | ->                   | -> III |                                 |

**Exercise.** Bundle ten sticks in 3s, then in 4s, then in 2s, etc. Predict the result. The same with a dozen sticks.

## 05 STACKS ARE RECOUNTED IN A NEW UNIT

**Question.** How can we change the unit of a stack, e.g. T = 3.4s = ?.5s.

**Answer.** By de-stacking, de-bundling, re-bundling and re-stacking: First the stack is de-stacked into separate bundles, then the bundles are de-bundled into a total, then the total is bundled, then the bundles are stacked, and finally the heights are counted. Recounted in 2s, even numbers give a stack, and odd numbers leaves 1. Foldable-units may fold: 8 = 4 fold2. Prime-units may not: 5 = 5 fold1. 1 is not a prime unit since B = BB = 1.

Example

| 1111 |    |       |    |   |    |         |    |         |    |     | I     |         |
|------|----|-------|----|---|----|---------|----|---------|----|-----|-------|---------|
|      | -> |       | -> |   | -> |         | -> |         | -> |     | I     |         |
| 3*4  | =  | 4 4 4 | =  | Т | =  | (T-5)+5 | =  | (T/5)*5 | =  | 2*5 | + 2*1 | = 2.25s |

Again the recounting result can be predicted by the recount-formula: T = (T/5)\*5 = (3\*4/5)\*5 = 2\*5 + 2\*1. A calculator shows the result: Entering '3\*4/5' gives '2.some'. Entering '3\*4-2\*5' gives '2'. So T = 2.2 5s. Exercise1. Recount a 2-stack in 3s, in 4s, in 5s, etc. Recount a 3-stack in 2s, in 4s, in 5s, etc. Always predict. **Exercise2.** Recount a 2-stack in  $\frac{1}{2}$  s, in  $\frac{1}{3}$  s, in  $\frac{1}{4}$  s, etc. Show that T = (T\*n)\*1/n.

## 06 USING CUPS FOR BUNDLE-COUNTING

Question. How can we describe using physical cups for counting bundles?

Answer. By using a cup-symbol ']' instead of the bundle symbol: T = 2B3 = 2]3 Bs.

In this way, an empty cup means 0: T = ten = 3B1 3s = 1BB1 3s, or with cups: T = ten = 3[1 = 1][1 = 1][0]1. With tens, we leave out the cup in multi-digit numbers: T = 2]3 tens = 23, and T = 2] = 2]0 tens = 20.

## Example

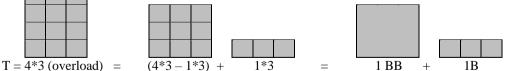
| If $B = 3$ , then $T = eleven = 1B8 =$                                                                         | If $B = 4$ , twelv | ve = 3B0                              | = 2]4 =            | 1]8     |        |       |
|----------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|--------------------|---------|--------|-------|
| B          -> B           -> BB                                                                                | BBB ->             | BB IIII                               | -> BI              |         |        |       |
| T = 1  8 = 2  5                                                                                                | =                  | 3  2 = 4  -1                          | T = 30 =           | 2 4     | = 1    | 8     |
| overload, overload                                                                                             | ad,                | <u>no</u> rmal, <mark>underloa</mark> | <i>d</i> ,         | overloa | d, ove | rload |
| Or with cups: $T = 18 = 1$ ]8                                                                                  | 1 111              | T = 30 = 3                            | = 3]0              |         |        |       |
| T = 1]8 = 1+1]-3+8 = 2]5 = 25 3s                                                                               |                    | II $T = 3]0 = 3-$                     | -1]+4+0=2]4=24     | 4 4s    |        |       |
| T = 2]5 = 2+1]-3+5 = 3]2 = 32 3s                                                                               | 111 11             | T = 2]4 = 2-                          | -1]+4+4 = 1]8 = 13 | 8 4s    |        |       |
| <b>Exercise1.</b> Recount ten eleven and twelve in 5s 4s 3s and 2s. First use cups then use fingers $\pm arms$ |                    |                                       |                    |         |        |       |

unt ten, eleven and twelve in 5s, 4s, 3s, and 2s. First use cups, then use fingers + arms. **Exercise2.** With a cup for 5s, remove overloads and create an underload, e.g. 3|6|8 = 3|7|3 = 4|2|3 = 4|3|-2. **Exercise3.** What is the effect of adding or removing a cup?  $T = 2[3 \rightarrow 2]3]$ , and  $T = 4[5]6] \rightarrow 4[5]6$ 

### **07 SQUARES AS BUNDLE-BUNDLES**

Question. What do we do with an overload where a stack is higher than its unit?

Answer. The overload then can be restacked to a new stack leaving a bundle-of-bundles becoming a square. Example



T = 234 = 2 bundles-of-bundles + 3 bundles + 4 unbundled (T = 2tenten 3ten 4)

In short, a given degree of Many may be rearranged as a multiple stack, a polynomial:  $T = 2345 = 2|3|4|5 = 2|1|+3|+4|+5 = 2*BBB + 3*BB + 4*B + 5*1 = 2*B^{3} + 3*B^{2} + 4*B + 5*1$ **Exercise1**. Recount overloads: T = 75, T = 188, T = 34 tens, T = 562 hundreds, T = 562 tens, T = 562 1s.

## **08 TOTALS ARE RECOUNTED FROM TENS TO ICONS**

**Question.** How can we change the unit from tens to icons?

Answer. We formulate an equation that is solved by recounting.

**Example.** 'How many 2s in 34?' gives the equation  $u^*2 = 34$  with the solution u = 34/2 since  $34 = (34/2)^*2$ . Thus, a multiplication equation is solved by moving a number to opposite side with opposite sign, as in an addition equation u+2 = 34 having the solution u = 34 - 2 since 34 = (34 - 2) + 2.

Exercise. Recount a ten-stack in 2s, in 3s, in 4s, etc.

## 09 TOTALS ARE RECOUNTED FROM ICONS TO TENS

Question. How can we change the unit from icons to tens?

**Answer.** Instead of recounting in tens, we simply multiply to get the answer without unit and decimal point. **Example.** T = 3.6s = 3\*6 = 18 = 1B8 tens = 1]8 tens = 1.8 tens.

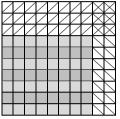
Recounting from icons to tens, as e.g. 47s = ? tens, leads to multiplication tables eased by showing numbers with underloads on a pegboard: 78s = 7\*8 = (B-3)\*(B-2) = 10B-3B-2B+6 (subtracted twice) = 5B6 = 56. Recounting in tens leads to decimals and percentages:

T = 3.6 = 3\*6 = 18 = 1B8 tens = 1.8/10 tens = 1.8 tens = 1.8\*10 = (18/100)\*100 = 18%\*100 = 0.18 tentensT = 23.6 = (23.6/10)\*10 = 2.36\*10 = 2.36 tens, and T = 23.6 = (23.6/100)\*100 = 0.236\*100 = 0.236 tentensT = 3.6 = (3.6/(1/10))\*1/10 = 36\*1/10 = 36 tenths = (3.6\*10)\*1/10, so T/(1/B) = T\*B

**Remark**. T = 3\*6 = 3 6s and T = 3\*6 = 18 only if recounted in tens. Multiplication thus is a special division. **Exercise1.** Use a pegboard with rubber bands to work through the whole table.

Exercise2. Use a pegboard, focus on squares. What is needed to go from on square to the next?

Exercise3. Recount a 3-stack in tens, in tenths, in hundreds, in hundredths, in thousands, in thousandths.



 $7 \overline{8s = (B-3)^*(B-2)} = 10B-3B-2B+6$ 

| dı | dreds, in hundredths, |  |  |  |  |   |   |  |  |
|----|-----------------------|--|--|--|--|---|---|--|--|
|    |                       |  |  |  |  |   |   |  |  |
|    |                       |  |  |  |  |   |   |  |  |
|    |                       |  |  |  |  |   |   |  |  |
|    |                       |  |  |  |  |   |   |  |  |
|    | <u> </u>              |  |  |  |  |   |   |  |  |
|    | -                     |  |  |  |  |   |   |  |  |
|    | -                     |  |  |  |  |   |   |  |  |
|    | -                     |  |  |  |  | _ |   |  |  |
|    | -                     |  |  |  |  | _ |   |  |  |
| L  |                       |  |  |  |  |   | L |  |  |
| 7  | 77s - 66s + 26s +     |  |  |  |  |   |   |  |  |

77s = 66s + 26s + 1, or  $(n+1)^2 = n^2 + 2*n + 1$ 

## 10 TOTALS ARE DOUBLE-COUNTED IN TWO UNITS

Question. How can we recount a total in different units?

Answer. Recount a number in the per-number; or recount the unit in the per-number.

**Example1**. Sugar counted in kilos, litres, dollars, % give the per-numbers 2 kg per 5 \$ per 6 litres per 100 %

| T = 7  kg = ? Recount the number                       | Recount the unit                              |
|--------------------------------------------------------|-----------------------------------------------|
| T = 7  kg = (7/2)*2  kg = (7/2)*5 \$ = 17.50 \$        | $= (\frac{1}{2}) kg = (\frac{5}{2}) 7 = 17.5$ |
| T = 7  kg = (7/2)*2  kg = (7/2)*6  litres = 21  litres | litres = $(litres/kg)*kg = (6/2)*7 = 21$      |
| T = 7  kg = (7/2)*2  kg = (7/2)*100 % = 350 %          | % = (%/kg)*kg = (100/2)*7 = 350               |
| P = 5% = (5/100)*100% = (5/100)*2  kg = 0.1  kg        | $kg = (kg/\%)^{*}\% = (2/100)^{*}5 = 0.1$     |

**Example2.** Double-counting with per-numbers occurs all over math and science:  $\Delta y = (\Delta y/\Delta x)^* \Delta x = m^* \Delta x$ , (meter = meter/sec)\*sec = speed\*sec, kg = (kg/cubic-meter) \* cubic-meter = density \* cubic-meter. Double-counted in the same unit, per-numbers are fractions, both operators needing numbers to be numbers. **Exercise.** 4 kg = 6 \$ = 7 litres = 100 %, T = 10 kg = ?, T = 8 \$ = ?; T = 30 litres = ?; T = 40 % = ?,

## 11 STACKS ADDED ON-TOP GIVES PROPORTIONALITY

Question. How can we add stacks on-top?

Answer. Stacks add on-top after recounting creates like units. Changing unit is called proportionality. **Examples**.  $T = 2 \ 3s + 4 \ 5s = ? \ 3s$ ,  $T = 2 \ 3s + 4 \ 5s = ? \ 5s$ . The recount-formula predicts the result. The 4 5s are recounted in 3s:  $T = 2 \ 3s + 4 \ 5s = 2 \ 3s + (4*5/3)*3 = 2 \ 3s + 6*3 + 2 = 2 \ 3s + 6 \ 3s + 2 = 8 \ 3s + 2$ The 2 3s are recounted in 5s:  $T = 2 \ 3s + 4 \ 5s = (2*3)/5*5 + 4 \ 5s = 1*5 + 1 + 4 \ 5s = 1 \ 5s + 1 + 4 \ 5s = 5 \ 5s + 1$ To check both stocks can be recounted in tens:  $T = 8 \ 3s + 2 = 8*3+2 = 26$  and  $T = 5 \ 5s + 1 = 5*5+1 = 26$ 



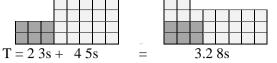


## 12 STACKS ADDED NEXT-TO GIVES INTEGRATION

Question. How can we add stacks next-to?

**Answer.** Adding stacks next-to is called integration of areas. It is done by recounting and restacking. **Example.** T = 2.3s + 4.5s = ?.8s. The result can be predicted by the recount-formula.

The 3s and 5s are added as 3+5 = 8s: T = 2 3s + 4 5s = (2\*3 + 4\*5)/8\*8 = 3\*8 + 2 = 3 8s + 2To check, both totals can be recounted in tens: T = 2 3s + 4 5s = 2\*3 + 4\*5 = 26 and T = 3\*8 + 2 = 26



Thus, 2 + 5 gives different results when added on-top and next-to.

T = 2\*3 + 5\*3 = 7\*3 if added on-top; and T = 2\*3 + 5\*3 = (2\*3 + 5\*3)/6\*6 = 33/6\*6 if added next-to. Saying '(3s of-which 2) + (5s of-which 4) = (8s of-which 32/8)' show that of-which-numbers add by areas. **Remark.** Reverse integration leads to differentiation: T = 23s + u5s = 38s,  $u = (3*8-2*3)/5 = \Delta T/5$ . **Exercise.** Add 1 2s + 3 4s on-top and next-to, predict the result. Use dices to create other exercises.

### **13 REVERSED NEXT-TO ADDITION GIVES DIFFERENTIATION**

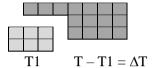
Question. How can we reverse next-to addition?

Answer. First push the initial stack away, then recount the rest.

**Examples.** 2 3s + ? 4s = 3 7s



T = 2 3s + u 4s = 3 7s





## 14 REVERSED ADDITION GIVES EQUATIONS

Question. How can we reverse addition?

Answer. Restack or recount to solve equations. Rule: Move numbers to opposite side with opposite sign. Examples. If u+3 = 8 then u = 8-3; if  $2^*u = 6$  then u = 6/2; if  $2^*u+1 = 9$  then u = (9-1)/2

• 
$$u$$
 III = IIIII = IIIII III  
 $u + 3 = 8 = (8-3) + 3$ 

So 
$$u = 8-3 = 5$$
 as predicted by restacking  $u+3 = 8 = (8-3)+3 = 5+3$ 

•  $2^*u + 1 = 9 = (9-1)+1 = 8+1 = (8/2)^*2 + 1 = 4^*2 + 1$ 

So u = 4 as predicted by  $2^{*}u + 1 = 9 = (9-1)+1 = 8+1$ , so  $2^{*}u = 8 = (8/2)^{*}2 = 4^{*}2$ .

**Exercise1.** Solve the equation u + 1 = 3, u + 2 = 5, etc. Construct more equations by using dices.

**Exercise2.** Solve the equation  $2^{*}u = 4$ ,  $3^{*}u = 12$ , etc. Construct more equations by using dices.

**Exercise3.** Solve the equation  $2^{*}u + 1 = 7$ ,  $3^{*}u + 2 = 14$ , etc. Construct more equations by using dices.

### **15 MEETING ALGEBRA IN A TILE-SYSTEM**

Question. How can we add and subtract playing cards?

**Answer.** Moving  $h^*b$  playing cards around makes visible several block formulas called algebra.

**Examples**.  $(h - b)^2 = h^2 - 2^* a^* b + b^2$ , and  $(h+b)^2 = h^* h + b^* b + 2^* h^* b$ , and  $(h+b)^* (h-b) = h^2 - b^2$ Half of a  $b^* b$  tile extends a tile to a  $h^* b$  playing card. Removing from a  $h^* h$  square two playing cards, and adding the bottom tile that has been removed twice will leave the square  $(h - b)^2 = h^2 - 2^* h^* b + b^2$ . And, removing from a  $h^* b$  playing card the bottom  $b^* b$  tile will leave the top  $(h - b)^* b = h^* b - b^* b$ . Four playing cards are arranged to form a  $(h+b)^*(h+b)$  square. Inside we find a  $h^* h$  square, a  $b^* b$  square and two playing cards, so,  $(h+b)^*(h+b) = (h+b)^2 = h^* h + b^* b + 2^* h^* b$ . Pulling away a  $b^* b$  tile from the  $h^* h$  square leaves a  $(h-b)^* h$  and  $a (h-b)^* b$  rectangles that add up to a  $(h-b)^*(h+b)$  rectangle. So,  $(h+b)^*(h-b) = h^2 - b^2$ . To solve the quadratic equation  $x^2 + 6^* x + 8 = 0$ , two cards form a square with the side x + 6/2, containing two  $6/2^* x$  rectangles and two squares,  $x^2$ , and  $(6/2)^2 = (6/2)^2 - 8 = 1$ , which gives  $x = -6/2 \pm 1 = -2$  and -4. Looking instead at  $x^2 + b^* x + c = 0$ , gives the solution  $x = -b/2 \pm \sqrt{((b/2)^2 - c)}$ .

