FLEXIBLE BUNDLENUMBERS RESPECT \& DEVELOP KIDS' OWN MATH

Allan Tarp (MATHeCADEMY.net, DK)

I. CHILDREN SHOW MASTERY OF MANY BEFORE SCHOOL

In an isolated covid-19 household we may ask: How to create simple material supporting the children in improving their mastery of Many?

This workshop-design is based on the observation that when asked 'How old next time?', a 3year old will say 4 showing 4 fingers; but, held together two by two, protests by saying 'That is not 4 . That is 22 s ', thus rejecting the predication 'four' by insisting on describing what exists, bundles of 2 s and 2 of them. Meeting Many, children develop a number-language with full sentences including a subject and a verb and a predicate as in the word-language, as well as 2 -dimensional bundle-numbers with units, neglected by the school's 1-dimensional line-names making some children count-over by saying 'twentyten'. So, the goal of the workshop is to inquire into the mastery of Many children bring to school to see what kind of mathematics occur if allowing the children to develop their already existing quantitative competence under proper guidance (Tarp 2018, 2020). In the workshop you will need 12 sticks, 12 cubes, a pegboard with rubber bands, squared paper and a pencil.

II. BRIDGE OUTSIDE EXISTENCE TO INSIDE ESSENCE

E01. Many become icons.
Pushing sticks away, transform many OUTSIDE ones into one INSIDE many-icon with as many sticks or strokes as it represents.

Repeat with cubes
Sticks and a folding ruler show that digits are, not symbols as the alphabet, but sloppy writings of icons having in them as many sticks as they represent: five sticks in the 5-icon, etc. A looking glass finding nothing when looking for more will iconize zero. If used as bundlesize, ten has no icon but is reported as 1 bundle or 1 B or 1 B 0 .

E02. Flexible bundle-counting roots negative numbers.

Count ten fingers in 5 s writing 6 in three different ways. Then count in $4 \mathrm{~s}, 3 \mathrm{~s}$ and 2 s .

Including bundles, ten fingers may be bundle-counted in fives as 'OBundle1, OB2, 0B3, 0B4, 1B0, 1B1' that also may be counted as $0 B 6$ or 2 B less 4 or $2 \mathrm{~B}-4$ with an overload or an underload, thus writing 6 in three ways as a 'flexible bundle-number':

$$
\mathrm{T}=6=0 \mathrm{~B} 6=1 \mathrm{~B} 1=2 \mathrm{~B}-4
$$

Using flexible bundle-numbers, ten fingers may also be counted in 5 s as ' $1 \mathrm{~B}-4,1 \mathrm{~B}-3$, etc.'

Counting on from ten, we meet 'Vikingcounting' where eleven is 'one-left', twelve is 'two-left', and thirteen is 'three-ten', while 'three-twenty' becomes twenty-three.

Counting in scores (twenties) from forty, the Danish Viking-descendants still count: half-three-scores, three-scores, half-four-scores, four-scores, and half-five-scores for ninety. Unable to understand the half-notion, the French instead counts over when expressing 87 as ' 4 scores and 1 ten and 7.'

E03. Flexible bundle-counting roots polynomials.

Bundle-counting ten fingers in 3 s , nine becomes 3B or 1BB, 1bundle-bundle, called hundred when using ten-bundles. And ten becomes 3B1 3s or 1BB0B1 3s, leading on to the general number-formula or polynomial $\mathrm{T}=$ ten $=1 * \mathrm{~B}^{\wedge} 2+0 * B+1 * 13 \mathrm{~s}$, showing the four
ways to unite numbers (the Arabic meaning of Algebra): on-top addition, multiplication, power and next-to stack-addition called integration, all with reverse splitting operations: subtraction, division, factor-finding (root), factor-counting (logarithm), and differentiation.

Counting ten fingers in 2 s , eight becomes 1 BBB , called thousand when using ten-bundles.

Bundle-counting thus allows meeting power before the other operations which allows replacing the place-value-system with bundle-writing: $\mathrm{T}=345=3 \mathrm{BB} 4 \mathrm{~B} 5$.

E04. Recounting as flexible bundle numbers will ease traditional calculations.
$\mathrm{T}=53=5 \mathrm{~B} 3=4 \mathrm{~B} 13=6 \mathrm{~B}-7$ tens
$65+27=6 \mathrm{~B} 5+2 \mathrm{~B} 7=8 \mathrm{~B} 12=9 \mathrm{~B} 2=92$
$65-27=6 \mathrm{~B} 5-2 \mathrm{~B} 7=4 \mathrm{~B}-2=3 \mathrm{~B} 8=38$
$7 * 48=7 * 4 \mathrm{~B} 8=28 \mathrm{~B} 56=33 \mathrm{~B} 6=336$
$336 / 7=33 \mathrm{~B} 6 / 7=28 \mathrm{~B} 56 / 7=4 \mathrm{~B} 8=48$
E05. Counting creates icons.
Count 7 cubes in 2s by 3 times pushing away 2s with a phone iconized as a division sign, predicted by a calculator as ' $7 / 2=3$.some'. Stack the bundles by a lift iconized as a cross, 3×2. To look for unbundled, pull away the stack with a rope iconized as a subtraction sign, predicted by a calculator as ' $7-3 \times 2=1$ '. So T $=7=32 \mathrm{~s} \& 1$. So operations predict.

E06. Placing the unbundled roots decimals, negative numbers and fractions.

Counting 7 cubes in 3 s gives 23 s \& 1 as predicted: $\mathrm{T}=7=(7 / 3)=2$.some; $7-2 \times 3=1$.

Placing the unbundled next-to the stack roots decimals and negative numbers:
$\mathrm{T}=7=2.13 \mathrm{~s}=3 .-23 \mathrm{~s}$
Placing the unbundled instead on-top of the stack counted in bundles roots fractions:
$\mathrm{T}=7=21 / 33 \mathrm{~s}$
Counting in tens, $\mathrm{T}=68=6.8$ tens $=7 .-2$ tens $=6$ 8/10 tens.

E07. OUTSIDE bundle-counting with icons
as units is predicted INSIDE by a recountformula $T=(T / B) * B$.

Recounting 8 in 2 s by $8 / 2$ times pushing away 2 s is predicted on a calculator as $\mathrm{T}=8=$ $(8 / 2) * 2$, which with unspecified numbers becomes a recount-formula $T=(T / B) * B$, (from T, T/B times, push away Bs) using a full number-language sentence with a subject, a verb and a predicate.

This recount 'proportionality' formula occurs all over mathematics and science: when relating proportional quantities as $\mathrm{y}=\mathrm{c} * \mathrm{x}$; in trigonometry as sine and cosine and tangent, $\mathrm{a}=(\mathrm{a} / \mathrm{c}) * \mathrm{c}=\sin \mathrm{A} * \mathrm{c}$; in coordinate geometry as line gradients, $\Delta \mathrm{y}=(\Delta \mathrm{y} / \Delta \mathrm{x}) * \Delta \mathrm{x}=\mathrm{c} * \Delta \mathrm{x}$; in calculus as the derivative, $d y=(d y / d x) * d x=$ $\mathrm{y}^{\prime} * \mathrm{dx}$; speed in science: $\Delta \mathrm{s}=(\Delta \mathrm{s} / \Delta \mathrm{t}) * \Delta \mathrm{t}=\mathrm{v} * \Delta \mathrm{t}$.

E08. Recount from tens to icons
OUTSIDE, to answer ' $40=$? 5 s' we use a pegboard or a squared paper to transform the stack 4.0 tens to 8.05 s . So decreasing the base will increase the height. INSIDE, we formulate an equation to be solved by recounting 40 in 5 s:

$$
\begin{aligned}
& \mathrm{u} * 5=40=(40 / 5) * 5, \text { so } \\
& \mathrm{u}=40 / 5 \text { giving } 40=8 * 5=85 \mathrm{~s}
\end{aligned}
$$

Notice that recounting gives the equation solution rule 'move to opposite side with opposite calculation sign'.

E09. Recount from icons to tens
OUTSIDE, to answer ' $47 \mathrm{~s}=$? tens' we use a pegboard or a squared paper to transform the stack 47 s to 2.8 tens. So, increasing the base will decrease the height.

INSIDE: oops, with no calculator ten-button we can't use the recount-formula? Oh, we just multiply, thus creating multiplication tables.

Using flexible bundle-numbers on a pegboard or a squared paper we see that
$\mathrm{T}=47 \mathrm{~s}=4 * 7=(\mathrm{B}-6) *(\mathrm{~B}-3)=10 \mathrm{~B}-6 \mathrm{~B}-3 \mathrm{~B}$
$--63 \mathrm{~s}=1 \mathrm{~B}+18=28$, making -- to + .
E10. Double-counting in two physical units.

Double-counting in two physical units gives a 'per-number' as 2 m per 3 sec or $2 \mathrm{~m} / 3 \mathrm{sec}$ or $2 / 3 \mathrm{~m} / \mathrm{sec}$. To answer the question ' $\mathrm{T}=6 \mathrm{~m}$ = ? sec' we just recount 6 in the per-number:
$\mathrm{T}=6 \mathrm{~m}=(6 / 2) * 2 \mathrm{~m}=(6 / 2) * 3 \mathrm{sec}=9 \mathrm{sec}$.
Double-counting in the same unit, pernumbers become fractions: 2 m per $3 \mathrm{~m}=2$ per $3=2 / 3$, and 2 per $100=2 / 100=2 \%$.

To answer the question ' 20 per hundred is ? per 400' we just recount 400 in 100s: $T=400$ $=(400 / 100) * 100$ giving $(400 / 100) * 20=80$.

To answer the question '20 per 400 is what per hundred?' we just recount 100 in 400s: $\mathrm{T}=$ $100=(100 / 400) * 400$ giving $(100 / 400) * 20=5$.

STEM formulas contain per-numbers: meter $=(\mathrm{meter} / \mathrm{sec}) * \mathrm{sec}=$ velocity $* \mathrm{sec}$, $\mathrm{kg}=(\mathrm{kg} /$ cubic-meter $) *$ cubic-meter $=$ density*cubic-meter;
force $=($ force $/$ square - meter $) *$ square - meter = pressure*square-meter;
energy $=($ energy $/ \mathrm{sec}) *$ sec $=$ Watt*sec;
energy $=($ energy $/ \mathrm{kg}) * \mathrm{~kg}=$ heat $* \mathrm{~kg}$.
Lego-bricks:
number
(number/meter)*meter = density*meter.
E11. Mutual double-counting the sides in a stack with base b and height a, halved by its diagonal c, creates per-numbers:

$$
\begin{aligned}
& \mathrm{a}=(\mathrm{a} / \mathrm{c}) * \mathrm{c}=\sin \mathrm{A} * \mathrm{c} \\
& \mathrm{~b}=(\mathrm{b} / \mathrm{c}) * \mathrm{c}=\cos \mathrm{A} * \mathrm{c} \\
& \mathrm{a}=(\mathrm{a} / \mathrm{b}) * \mathrm{~b}=\tan \mathrm{A} * \mathrm{~b} \\
& \pi \approx \mathrm{n} * \sin (180 / \mathrm{n})
\end{aligned}
$$

Draw a vertical tangent to a circle with radius 5. With a protractor, mark the intersection points on the tangent for angles from 10 to 80. Compare the per-number intersection/5 with tangent of the angle on a calculator.

E12. On squared paper a point has an outnumber x and an up-number $y, A(x, y)$. The per-number $\Delta \mathrm{y} / \Delta \mathrm{x}$ allows moving on a line.

With $A(2,5)$ and $B(4,6)$, the line per-number
is $\Delta y / \Delta x=(6-5) /(4-2)=1 / 2$. Changing position to $C(8, y)$ gives $\Delta y=(\Delta y / \Delta x) * \Delta x=1 / 2 *(8-2)=3$, and $y=5+3=8$, giving $C(8,8)$.

E13. Next-to addition: If T1 $=23$ s and T2 = 45 s , what is $\mathrm{T} 1+\mathrm{T} 2$ when added next-to as 8 s ? Here we see that next-to addition OUTSIDE means adding by areas where multiplication precedes addition. INSIDE, the recountformula predicts the result. Next-to addition is called integral calculus.

E14. Reversed next-to addition: If $\mathrm{T} 1=23 \mathrm{~s}$ and T 2 add next-to as $\mathrm{T}=47 \mathrm{~s}$, what is T 2 ? Here we see that when finding the answer by removing the initial stack and recounting the rest in 3s, subtraction precedes division, which is natural as reversed integration, also called differential calculus.

E15. On-top addition: If T1 $=23$ s and T2 = 45 s , what is $\mathrm{T} 1+\mathrm{T} 2$ when added on-top as 3 s ; and as 5 s ? Here we see that on-top addition means changing units by using the recountformula. Thus, on-top addition may apply proportionality; an overload is removed by recounting in the same unit.

E16. Reversed on-top addition: If $\mathrm{T} 1=23 \mathrm{~s}$ and T 2 as some 5 s add to $\mathrm{T}=45 \mathrm{~s}$, what is T 2 ? Here we see that when finding the answer by removing the initial stack and recounting the rest in 5 s, subtraction precedes division, again called differential calculus. An underload is removed by recounting.

E17. Adding tens: If $\mathrm{T} 1=23$ and $\mathrm{T} 2=48$, what is T1+T2 when added as tens? Recounting removes an overload: $\mathrm{T} 1+\mathrm{T} 2=23$ $+48=2 \mathrm{~B} 3+4 \mathrm{~B} 8=6 \mathrm{~B} 11=7 \mathrm{~B} 1=71$.

E18. Subtracting tens: If T1 $=23$ and T2 add to $\mathrm{T}=71$, what is T 2 ? Here, recounting removes an underload: $\mathrm{T} 2=71-23=7 \mathrm{~B} 1-$ $2 \mathrm{~B} 3=5 \mathrm{~B}-2=4 \mathrm{~B} 8=48$; or $\mathrm{T} 2=956-487=$ $9 \mathrm{BB} 5 \mathrm{~B} 6-4 \mathrm{BB} 8 \mathrm{~B} 7=5 \mathrm{BB}-3 \mathrm{~B}-1=4 \mathrm{BB} 7 \mathrm{~B}-1=$ $4 \mathrm{BB} 6 \mathrm{~B} 9=469$. Since $\mathrm{T}=19=2 .-1$ tens, $\mathrm{T} 2=$
$19-(-1)=2 .-1$ tens take away $-1=2$ tens $=$ $20=19+1$, so $-(-1)=+1$.

E19. Multiplying tens: What is 7 43s recounted in tens? Here we see that also multiplication may create overloads:
$\mathrm{T}=7 * 43=7 * 4 \mathrm{~B} 3=28 \mathrm{~B} 21=30 \mathrm{~B} 1=301$
$\mathrm{T}=27 * 43=2 \mathrm{~B} 7 * 4 \mathrm{~B} 3=8 \mathrm{BB}+6 \mathrm{~B}+28 \mathrm{~B}+21=$ 8BB34B21 $=8 \mathrm{BB} 36 \mathrm{~B} 1=11 \mathrm{BB} 6 \mathrm{~B} 1=1161$, solved geometrically in a 2×2 stack.

E20. Dividing tens: What is 348 recounted in $6 s$? Here we see that recounting a total with overload often eases division:

$$
\mathrm{T}=348 / 6=34 \mathrm{~B} 8 / 6=30 \mathrm{~B} 48 / 6=5 \mathrm{~B} 8=58 ;
$$

$\mathrm{T}=349 / 6=34 \mathrm{~B} 9 / 6=30 \mathrm{~B} 49 / 6=(30 \mathrm{~B} 48$ $+1) / 6=58+1 / 6$.

E21. Adding per-numbers: 2 kg at $3 \$ / \mathrm{kg}+$ 4 kg at $5 \$ / \mathrm{kg}=6 \mathrm{~kg}$ at what ? Here we see that the unit-numbers 2 and 4 add directly whereas the per-numbers 3 and 5 add by areas since they must first transform to unit-numbers by multiplication, creating the areas. Here, the per-numbers are piecewise constant. Later, asking 2 seconds of $4 \mathrm{~m} / \mathrm{s}$ increasing constantly to $5 \mathrm{~m} / \mathrm{s}$ leads to finding the area in a 'locally constant' (continuous) situation defining local constancy by epsilon and delta.

E22. Subtracting per-numbers: 2 kg of $3 \$ / \mathrm{kg}$ +4 kg of what $=6 \mathrm{~kg}$ of $5 \$ / \mathrm{kg}$? Here we see that unit-numbers 6 and 2 subtract directly whereas the per-numbers 5 and 3 subtract by areas since they must first transform into unitnumber by multiplication, creating the areas. In a 'locally constant' situation, subtracting pernumbers is called differential calculus.

III. Grand theory holds conflicting conceptions on concepts

Within philosophy, Platonism and Existentialism discuss if concepts are examples of abstractions or abstractions from examples. Within psychology, Vygotsky and

Piaget discuss if concepts are constructions mediated socially or experienced individually. Within sociology, the agent-structure debate is about establishing inclusion by accepting the agent's own concepts or establishing exclusion by insisting on teaching and learning institutionalized concepts.

IV. DISCUSSION

The physical fact Many makes children bring flexible bundle-numbers to school containing core mathematics as proportionality, calculus, solving equations, and modeling by numberlanguage sentences with a subject, a verb and a predicate. Of course, a curriculum with counting before adding is contrary to the present tradition, and calls for huge funding for new textbooks and for extensive in-service training. However, it can be researched outside the tradition in special education, and when educating migrants and refugees. Likewise, applying grand theory in mathematics education is uncommon, but with education as a social 'colonization' of human brains, sociological warnings should be observed. Quality education, the fourth of the United Nations Sustainable Development Goals, thus should develop the child's existing mastery of Many.

References

Tarp, A. (2018). Mastering many by counting, re-counting and double-counting before adding on-top and next-to. Journal of Mathematics Education 11(1), 103-117.

Tarp, A. (2020). De-modeling numbers, operations and equations: from inside-inside to outside-inside understanding. Ho Chi Minh City University of Education Journal of Science 17(3), 453-466.

