WORKSHOP EXERCISES IN FLEXIBLE BUNDLE-NUMBERS

Allan.Tarp@gmail.com, MATHeCADEMY.net, 2020

E01. Pushing sticks away, transform many OUTSIDE ones into one INSIDE many-icon with as many strokes as it represents. Repeat with cubes transforming 3 1s to 13 s .

E02. Bundle-count ten fingers in 5 s writing 6 in three different ways. Then count in $4 \mathrm{~s}, 3 \mathrm{~s}$ and 2 s : Using 'flexible BundleNumbers', $T=6=0 \mathbf{B} 6=1 \mathbf{B} 1=2 \mathbf{B}-45$ s (overload, standard, underload). And $0 \mathbf{B} 1=1 \mathbf{B}-4,0 \mathbf{B} 2=1 \mathbf{B}-3, \ldots 5 \mathrm{~s}$

E03. Bundle-count ten fingers in 3 s using bundle-bundles. Then in 2 s . $\mathrm{T}=$ ten $=1 \mathbf{B B} 0 \mathbf{B} 1=1013 \mathrm{~s}$ Write traditional numbers as flexible BundleNumbers: $T=53=5 B 3=4 B 13=6 B-7$ tens

E04.
Flexible BundleNumbers ease Operations

$65+27=?=$	$6 B 5+2 B 7=8 B 12=9 B 2=92$
$65-27=?=$	$6 B 5-2 B 7=4 B-2=3 B 8=38$
$7 * 48=?=$	$7 * 4 B 8=28 B 56=33 B 6=336$
$336 / 7=?=$	$33 B 6 / 7=28 B 56 / 7=4 B 8=48$

E05. With cubes, transform the three OUTSIDE parts of a counting process, PUSH \& LIFT \& PULL, into three INSIDE operation-icons: division / \& multiplication x \& subtraction -

E06. Counting 7 cubes in 3 s gives $23 \mathrm{~s} \& 1$ as predicted: $\mathrm{T}=7=(7 / 3)=2$.some; $7-2 \times 3=1$.

Placing the unbundled next-to the stack roots decimals and negative numbers:	$\mathrm{T}=7=2.1 \mathbf{3 s}=3 .-2 \mathbf{3 s}$
Placing the unbundled instead on-top of the stack counted in bundles roots fractions:	$\mathrm{T}=7=21 / 3 \mathbf{3 s}$

Recount traditional numbers: $\mathrm{T}=68=6.8$ tens $=7 .-2$ tens $=68 / 10$ tens
E07. OUTSIDE bundle-counting with icons as units is predicted INSIDE by a recount-formula $\mathbf{T}=(\mathbf{T} / \mathbf{B}) * \mathbf{B}$ (from $T, T / B$ times, push away Bs) coming from recounting 8 in 2 s by $8 / 2$ times pushing away 2 s as predicted on a calculator as $\mathrm{T}=8=(8 / 2) * 2$, thus using a full number-language sentence with a subject, a verb and a predicate.

E08. Recount from tens to icons (decreasing the base will increase the height)
OUTSIDE, to answer the question ' $40=\mathbf{?} \mathbf{5 s}$ ', on squared paper transform the stack 4.0 tens to $\mathbf{5 s}$.
INSIDE, formulate an equation to be solved by recounting 40 in $\mathbf{5 s}$:
$u * 5=40=(40 / 5) * 5$, so $u=40 / 5$.
Notice that recounting gives the solution rule 'move to opposite side with opposite calculation sign'.
E09. Recount from icons to tens (increasing the base will decrease the height)
OUTSIDE, to answer ' $37 \mathbf{s}=$? tens', on squared paper or a pegboard change the stack $37 \mathbf{s}$ to tens.
INSIDE: oops, with no ten-button on a calculator we can't use the recount-formula? Oh, we just multiply! Use flexible bundle-numbers on a pegboard or a squared paper we see that
$\mathrm{T}=47 \mathrm{~s}=4 * 7=(\mathrm{B}-6)^{*}(\mathrm{~B}-3)=10 \mathrm{~B}-6 \mathrm{~B}-3 \mathrm{~B}-63 \mathrm{~s}=1 \mathrm{~B}+18=28$, making - - to + .
E10. DoubleCounting in two physical units
DoubleCounting in two physical units gives a 'per-number' as e.g. 2 m per 3 sec , or $2 \mathrm{~m} / 3 \mathrm{sec}$.

To answer the question ' $\mathrm{T}=6 \mathrm{~m}=$?sec', we just recount 6 in the per-number: $\mathrm{T}=6 \mathrm{~m}=(6 / 2) * 2 \mathrm{~m}=$ $(6 / 2)^{*} 3 \mathrm{sec}=9 \mathrm{sec}$. Answer the question ' $\mathrm{T}=12 \mathrm{sec}=$? m '.

Find formulas with per-numbers in science and mathematics.
E11. Mutual double-counting the sides in an axb stack halved by its diagonal c creates trigonometry: $\mathrm{a}=(\mathrm{a} / \mathrm{b}) * \mathrm{~b}=\tan \mathrm{A} * \mathrm{~b}$, etc

Draw a vertical tangent to a circle with radius r. With a protractor, mark the intersection points on the tangent for angles from 10 to 80 . Compare the per-number intersection/radius with tangent of the angle on a calculator.

A 12×12 square $A B C D$ has $A B$ on the ground and is inclined 20 degrees. From B, a straight road is to be constructed intersecting the borderline AD in the point E , inclined 5 degrees. Find the length DE . (Hint: Show that if $\mathrm{DE}=2$, then the incline of the road is 3.2 degrees).
E12. On squared paper a point has an out-number x and an up-number $y, A(x, y)$. The per-number $\Delta y / \Delta x$ allows moving on a line.
With $\mathrm{A}(2,5)$ and $\mathrm{B}(4,6)$, the line per-number is $\Delta \mathrm{y} / \Delta \mathrm{x}=(6-5) /(4-2)=1 / 2$. Changing position to $C(8, y)$ gives $\Delta y=(\Delta y / \Delta x)^{*} \Delta x=1 / 2 *(8-2)=3$, and $y=5+3=8$, giving $C(8,8)$.
E13. Next-to addition: If $\mathrm{T} 1=23 \mathrm{~s}$ and $\mathrm{T} 2=45 \mathrm{~s}$, what is $\mathrm{T} 1+\mathrm{T} 2$ when added next-to as 8 s ?
E14. Reversed next-to addition: If $\mathrm{T} 1=23 \mathrm{~s}$ and T 2 add next-to as $\mathrm{T}=47 \mathrm{~s}$, what is T 2 ?
E15. On-top addition: If $\mathrm{T} 1=23 \mathrm{~s}$ and $\mathrm{T} 2=45 \mathrm{~s}$, what is $\mathrm{T} 1+\mathrm{T} 2$ when added on-top as 3 s ; and as 5 s ?
E16. Reversed on-top addition: If $\mathrm{T} 1=23 \mathrm{~s}$ and T 2 as some 5 s add to $\mathrm{T}=45 \mathrm{~s}$, what is T 2 ?
E17. E19. Multiplying tens: What is 2743 s recounted in tens? $T=27 * 43=2 B 7 * 4 B 3=$ $8 \mathrm{BB}+6 \mathrm{~B}+28 \mathrm{~B}+21=8 \mathrm{BB} 34 \mathrm{~B} 21=8 \mathrm{BB} 36 \mathrm{~B} 1=11 \mathrm{BB} 6 \mathrm{~B} 1=1161$

E18. Adding per-numbers: 2 kg at $3 \$ / \mathrm{kg}+4 \mathrm{~kg}$ at $5 \$ / \mathrm{kg}=6 \mathrm{~kg}$ at what?
E19. Subtracting per-numbers: 2 kg of $3 \$ / \mathrm{kg}+4 \mathrm{~kg}$ of what $=6 \mathrm{~kg}$ of $5 \$ / \mathrm{kg}$?
E20. Solving STEM proportionality heating problems with recounting
With a heater giving 20 J in 30 sec , what does 40 sec give, and how many seconds is needed for 50J?
With 40 Joules melting 5 kg , what will 60 Joules melt and what will 7 kg need?
With 3 degrees needs 50 Joules, what does 7 degrees need; and what does 70 Joules give?
With 4 deg. in 20kg needing 50 Joules, what does 9 deg. in 30 kg need? What does 70 Joules give in 40 kg ?

1BB0	1BB1	1BB2	1BB3	1BB4	1BB5	1BB6	1BB7	1BB8	1BB9	18B40
10 B 0	10 B 1	10 B 2	10 B 3	10 B 4	$10 \mathrm{B5}$	10 B 6	10 B 7	10 B 8	1039	$10 \mathrm{B4} 4$
9B0	9B1	9B2	9B3	9B4	9B5	9B6	9B7	9B8	9B9	9 BHO
8B0	8B1	8B2	8B3	8B4	8B5	8B6	$8 \mathbf{B 7}$	8B8	8B9	8 BHO
$7 \mathbf{B} 0$	7B1	$7 \mathbf{B} 2$	7B3	7B4	7B5	7B6	7B7	7 B 8	7B9	7 BH
6B0	6B1	6 B 2	6B3	6B4	6B5	6B6	6B7	6B8	6B9	$6 \mathrm{B4}$
5B0	5B1	5B2	5B3	5B4	5B5	5B6	5B7	5B8	5B9	S 10
4B0	4B1	4B2	4B3	4B4	4B5	4B6	4B7	4B8	4B9	$4 B 40$
3B0	3B1	3B2	3B3	3B4	3B5	3B6	3B7	3B8	3B9	$3 \mathrm{B40}$
2B0	2B1	2B2	2B3	2B4	2B5	2B6	2B7	2B8	2B9	2 BIO
1B0	1B1	1B2	1B3	1B4	1B5	1B6	1B7	1B8	1B9	1840
0B0	0B1	0B2	0B3	0B4	0B5	0B6	0B7	0B8	0B9	0 BH

