MATHeCADEMY.net

Count before ove Add

 MatheMatics as ManyMath a Natural Science about MANY| | $\begin{array}{lllllllllll}1 & \boxed{ } & \square & \square & \square & \square & \square & \square & \square\end{array}$ |
| :---: | :---: |
| in Icons in Bundles | $\begin{aligned} & T=\\|\|\| \|=4=4 \\ & T=7=\\|\|\|\|\|=H+\#\|=H+\# H=1 B 43 s \text { or } 2 B 13 s \text { or } 3 B-23 s \end{aligned}$ |
| ReCount in same Unit in new Unit | ReBundle to create Overload or Underload $\begin{aligned} & T=7=\|\|\|\|\|\| \|=1 B 43 s=2 B 13 s=3 B-23 s \\ & T=7=2 B 13 s=1 B 34 s=1 B 25 s=3 B 12 s=1 B B 1 B 12 s=11 B 12 s \end{aligned}$ |
| ReCounting
 Predicted by a RecountFormula | |
| ReCount in Tens from Tens | $37 \mathrm{~s}=$? tens Answer: $3 \times 7=21=2 \mathrm{~B} 1$ tens
 ? 7s = 3 tens Answer: $(30 / 7) \times 7=4 B 27 s$ |
| DoubleCount
 in PerNumbers
 in PerFive, 3/5
 in PerHundred, \% | $\begin{aligned} & \text { With } 4 \$ \text { per } 5 \mathrm{~kg} \text { or } 4 / 5 \$ / \mathrm{kg}, \mathrm{~T}=20 \mathrm{~kg}=(20 / 5) \times 5 \mathrm{~kg}=(20 / 5) \times 4 \$=16 \$ \\ & 3 / 5=3 \$ / 5 \$ \text { of } 200 \$=? \$.200 \$=(200 / 5) \times 5 \$ \text { gives }(200 / 5) \times 3 \$=120 \$ \\ & 70 \%=70 \$ / 100 \$ \text { of } 300 \$=? \$.300 \$=(300 / 100) \times 100 \$=\operatorname{gives}(300 / 100) \times 70 \$=210 \$ \end{aligned}$ |
| Add NextTo OnTop | $\begin{aligned} & \mathrm{T}=23 \mathrm{~s}+45 \mathrm{~s}=3 \mathrm{~B} 28 \mathrm{~s} \quad \text { Integration } \\ & \mathrm{T}=23 \mathrm{~s}+45 \mathrm{~s}=1 \mathrm{~B} 15 \mathrm{~s}+45 \mathrm{~s}=5 \mathrm{~B} 15 \mathrm{~s} \quad \text { Proportionality } \end{aligned}$ |
| Multiply, Divide BundleWriting | $\begin{aligned} & 7 \times 63=7 \times 6 B 3=42 B 21=44 B 1=441 \\ & 245 / 7=24 B 5 / 7=21 B 35 / 7=3 B 5=35 \end{aligned}$ |
| Abacus in 2 mode | $\mathrm{T}=7=2 \mathrm{~B} 13 \mathrm{~s}$ |

Geometry-mode

MATHeCADEMY.net

Teaching Teachers to Teach MatheMatics as ManyMath PYRAMIDeDUCATION
CATS: Count \& Add in Time \& Space

Flexible BundleNumbers

 Develops when Kids adapt to ManyOutside \＆Inside Math

Digits as ICONS III IIII IIIII		34
Operations as ICONS	Push • Lift • Pull • Unite	／X－＋
Count Fingers in 5s using BundleCounting \＆ BundleNumbers	।•••• $110 \cdot 0$ 11100 11110 HH H1H l．．．．．	
Unbundled creates Decimals \＆Fractions \＆ Negative Numbers lllll $\rightarrow \mathrm{HH}$		$\begin{aligned} \mathrm{T}=5=2 \boldsymbol{B} 1 \quad \mathbf{2 s}=2.1 \quad \mathbf{2 s} \\ \mathrm{~T}=2 \mathbf{1} / 2 \quad \mathbf{3 s} \\ \mathrm{~T}=3 \boldsymbol{B}-1 \quad 2 \mathbf{s}=3 .-1 \mathbf{2 s} \\ \mathrm{~T}=1 \boldsymbol{B} \mathbf{B} \mathbf{B} 1 \quad\left(\mathrm{~T}=p^{*} x^{\wedge} 2+q^{*} x+r\right) \end{aligned}$
ReCount in Same Unit creates Flexible Numbers \【【\｜II $\rightarrow 53$	5：HIII HHI HHH	T＝1B3 2s Overload T＝2B1 2s Standard $\mathrm{T}=3 \mathrm{~B}-1$ 2s Underload $\mathrm{T}=53=5 B 3=4 B 13=6 B-7$ tens
Flexible BundleNumbers ease Operations	$\begin{aligned} & 65+27=?= \\ & 65-27=?= \\ & 7 \times 48=?= \\ & 336 / 7=?= \end{aligned}$	$\begin{aligned} & 6 B 5+2 B 7=8 B 12=9 B 2=92 \\ & 6 B 5-2 B 7=4 B-2=3 B 8=38 \\ & 7 \times 4 B 8=28 B 56=33 B 6=336 \\ & 33 B 6 / 7=28 B 56 / 7=4 B 8=48 \end{aligned}$
ReCount in New Unit $6=? \mathbf{2 s}$ ReCount－Formula：	$\begin{aligned} 6 & =(6 / 2) \times 2 \\ \mathrm{~T} & =(\mathrm{T} / B) \times B \end{aligned}$	$\begin{gathered} \mathrm{T}=5=(5 / 2) \times 2=?=2 \mathrm{~B} 1 \mathbf{2 s} \\ \begin{array}{cc} 5 / 2 & 2 . \text { some } \\ 5-2 * 2 & 1 \end{array} \end{gathered}$
ReCount：Tens to Icons【IIIII＝？7s	$3 B 5$ tens $=u^{*} 7$	
ReCount：Icons to Tens $68 s=$ ？tens \square		$\begin{aligned} \mathrm{T} & =68 \mathrm{~s}=6 \times 8 \\ & =(B-4) \times(B-2) \\ & =B B-4 B-2 B--8 \\ & =10 B-6 B+8 \\ & =4 B 8=4.8 \text { tens }=48 \end{aligned}$
DoubleCount gives PerNumbers	2\＄per $3 \mathrm{~kg}=2 \$ / 3 \mathrm{~kg}$	$\begin{aligned} \mathrm{T}=6 \$ & =(6 / 2) \times 2 \$ \\ & =(6 / 2) \times 3 \mathrm{~kg}=9 \mathrm{~kg} \end{aligned}$
Like Units：Fractions 5% of 40	5\＄／100\＄of 40\＄	$\begin{aligned} & \mathrm{T}=40 \$=(40 / 100) \times 100 \$ \\ & \text { gives } \quad(40 / 100) \times 5 \$=2 \$ \end{aligned}$
DoubleCount a Block halved by its Diagonal		$\begin{aligned} a= & (a / c)^{*} c=\sin A^{*} c \\ a= & (a / b)^{*} b=\tan A^{*} b \\ & \pi=n^{*} \tan (180 / n) \text { for n large } \\ & c^{*} c=a^{*} a+b^{*} b \end{aligned}$

Flexible Bundle-Numbers Respect \& Develop Kids Own Math

Allan.Tarp@gmail.com, MATHeCADEMY.net, 2020

1. Meeting Many inspires transforming five ones into one five-icon containing five strokes or sticks. Likewise, with the other digits from one to nine, also containing as many strokes or sticks as they represent if written less sloppy. Icon-building may be illustrated with a folding ruler. Transforming five ones to one fives allows using five as a unit when counting a total T by bundling and stacking, to be reported in a full number-language sentence with a subject, a verb and a predicate, e.g. $T=25 \mathrm{~s}$.

02 . Icons thus inspires 'bundle-counting' and 'bundle-writing' where a total T of 51 s is recounted in 2 s as $T=1 B 32 \mathrm{~s}=2 B 12 \mathrm{~s}=3 B-12 \mathrm{~s}$, i.e. with or without an overload, or with an underload rooting negative numbers. The unbundled 1 can be placed next to the bundles separated by a decimal point, or on-top of the bundles counted in bundles, thus rooting fractions, $T=5=2 B 12 \mathrm{~s}=$ $2.12 \mathrm{~s}=21 / 22 \mathrm{~s}$. Recounting in the same unit to create or remove over- or underloads eases operations. Example: $T=336=33 B 6=28 B 56=35 B-14$, so $336 / 7=4 B 8=5 B-2=48$.
03. Bundle-counting makes operations icons also. First a division-broom pushes away the bundles, then a multiplication-lift creates a stack, to be pulled away by a subtraction-rope to look for unbundles singles separated by the stack by an addition-cross. A calculator uses a 'recount formula', $T=(T / B)^{*} B$, to predict that 'from $T, T / B$ times, $B \mathrm{~s}$ can be taken away'. This recount formula occurs all over mathematics and science: when relating proportional quantities as $y=c^{*} x$; in trigonometry as sine and cosine and tangent, e.g. $a=(a / c) * c=\sin A * c$; in coordinate geometry as line gradients, $\Delta y=(\Delta y / \Delta x)^{*} \Delta x=c^{*} \Delta x$; and in calculus as the derivative, $\mathrm{d} y=(\mathrm{d} y / \mathrm{d} x)^{*} \mathrm{~d} x=y^{\prime *} \mathrm{~d} x$.
04. Recounting in a different unit is called proportionality. Asking ' $34 \mathrm{~s}=$? 5 s ', sticks say $2 B 25 \mathrm{~s}$. Entering ' $3 * 4 / 5$ ' we ask a calculator 'from 34 s we take away 5 s '. The answer ' 2 .some' predicts that the singles come by taking away 25 s, thus asking ' $3 * 4-2 * 5$ '. The answer ' 2 ' predicts that 3 4 s can be recounted in 5 s as $2 B 25 \mathrm{~s}$ or 2.25 s .
05. Recounting from tens to icons by asking ' $35=$? 7 s ' is called an equation $u^{* 7}=35$. It is easily solved by recounting 35 in 7 s : $u^{*} 7=35=(35 / 7) * 7$. So $u=35 / 7$, showing that equations are solved by moving to opposite side with opposite calculation sign.
06. Recounting to tens by asking ' $27 \mathrm{~s}=$? tens' is eased by using underloads: $T=2 * 7=2 *(B-3)=$ $20-6=14$; and $6^{*} 8=(B-4) *(B-2)=B B-4 B-2 B-8=100-60+8=48$.
07. Double-counting a quantity in units gives a 'per-number' as e.g. $2 \$$ per 3 kg , or $2 \$ / 3 \mathrm{~kg}$. To answer the question ' $T=6 \$=$? kg ', we recount 6 in 2 s since the per-number is $2 \$ / 3 \mathrm{~kg}$: $T=6 \$=$ $(6 / 2) * 2 \$=(6 / 2) * 3 \mathrm{~kg}=9 \mathrm{~kg}$. Double-counting in the same unit creates fractions and percent: $2 \$ / 3 \$$ $=2 / 3$, and $2 \$ / 100 \$=2 / 100=2 \%$.
08. Next-to addition geometrically means adding by areas, so multiplication precedes addition. Next-to addition is also called integral calculus, or differential if reversed.
09. On-top addition means using the recount-formula to get like units. Changing units is also called proportionality, or solving equations if reversed.

References

Tarp, A. (2018). Mastering Many by counting, re-counting and double-counting before adding on-top and next-to. Journal of Mathematics Education, 11(1), 103-117.

Tarp, A. (2020). De-modeling numbers, operations and equations: from inside-inside to outside-inside understanding. Ho Chi Minh City University of Education Journal of Science 17(3), 453-466.

