

Developing the Child's own Mastery of Many

Children show mastery of many before school

- In an isolated covid-19 household we may ask:
- How to create simple material supporting the children in improving their mastery of Many?
- This workshop is based on the observation that when asked 'How old next time?', a 3year old will say 4 showing 4 fingers; but, held together two by two, protests by saying 'That is not 4. That is 2 2s',
- The child thus rejects the judgement 'four' by insisting on describing what exists, bundles of 2s and 2 of them.

Goal: Bridge the outside and the inside

- So, the goal of the workshop is to explore into the mastery of Many children bring to school to see what kind of mathematics occurs if allowing the children to develop their already existing quantitative competence under proper guidance (Tarp 2018, 2020).
- In the workshop you will need 12 sticks, 12 cubes, a pegboard with rubber bands, squared paper and a pencil.

In Mathematics Education, the goal is

digital numbers, negative numbers, decimals, fractions, functions, solving equations, proportionality, calculus, trigonometry

Is Mathematics WellDefined?

No, three Versions: MetaMatics, MatheMatism, ManyMath

This is true	Always	Never	Sometimes
2 + 3 = 5	Only with the sa	me unit; 2weeks + 3da	iys = 17days x (MatheMatsim
2 x 3 = 6	x 2x3 is	2 3s that can always be r	recounted as 6 1s (ManyMath)
$\frac{1}{2} + \frac{2}{3} = \frac{3}{5}$	() 1 of 2 apples + 2	of 3 apples gives 3 of	x (ManyMath) 5 apples, and not 7 of 6
$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$	Only if taken of t Fractions are not num	he same total bers, but operators, needing i	X (MatheMatsim numbers to become numbers
C1: a FUNCTION is	For example 2+ <i>x,</i> bu i.e. a name for a cal	ut not 2+3 culation with an unspecifie	d number (ManyMath)
<u>C2:</u>	An example of a SE ^T first component ide	T-relation where ntity implies second comp	onent identity (MetaMatics

Adding without units creates MatheMatism true INSIDE but seldom OUTSIDE

The Teacher	The Students (the fraction paradox)			
What is 1/2 + 2/3?	Well, 1 of 2 + 2 of 3 gives (1+2) of (2+3), or 3 of 5			
No! 1/2 + 2/3 = 3/6 + 4/6 = 7/6	But if the browns are 1/2 of 2 cakes, and 2/3 of 3 cakes, then they are 1+2 of 2+3 cakes, i.e. 3/5 of 5 cakes! How can the browns be 7 cakes out of 6 cakes?			
INSIDE this classroom 1/2 + 2/3 IS 7/6 !				

Without units, fractions & digits are operators, needing numbers to become numbers.

2+3 IS 5? <u>No</u>, 2weeks + 3days is 17days; and 2m + 3cm = 203cm.

2x3 IS 6? <u>Yes</u>, since 3 is the unit, and 2 **3s** can be recounted to 6 1s.

3 kinds of math, **pre**-, **present** & **post**-setcentric mathematics, defining a 'function' differently

Pre-setcentric math: a function is a CALCULATION with both specified and unspecified numbers, e.g. **2+u**.

Present setcentric math: a function is a SUB**SET** OF **SET**-PRODUCT where first-component identity implies second-component identity.

Post-setcentric math: a function is a NUMBER-LANGUAGE SENTENCE, e.g. **T** = **2**+*u*, linking an OUTSIDE existence to an INSIDE chosen essence.

Post-setcentric math: math through its use, as with the other language in our 2 language houses

The WORD-language assigns words in sentences with	• a subject
	• a verb
The NUMBER-language assigns numbers instead with	• a predicate

Both languages have a META-language, a grammar, describing the language, that is learned before the grammar. Why does mathematics teach language after and not before grammar?

The **Communicative Turn** in language ed.

Before 1970, foreign language was taught as an example of its grammar.

Then a reaction came with The Communicative Turn.

Halliday: "A functional approach to language means investigating how language is used: trying to find out what are the purposes that language serves for us."

Likewise, Widdowson adopts a "communicative approach to the teaching of language" allowing more students to learn a language through its use for communication about outside things and actions.

Defining <u>MetaMatism</u> = MetaMatics+MatheMatism

MetaMatics is defining a concept, not as a BottomUp abstraction from many examples but as a TopDown example of one abstraction, derived from the meta-physical abstraction **SET**, made meaningless by self-reference as shown by Russell's version of the liar paradox: M belongs, only if it does not, to the set of sets not belonging to itself:

With M = {A|A∉A}: M∈M⇔M∉M

MatheMatism is a statement that is correct inside, but seldom outside a classroom, as e.g. adding numbers without units as <u>2+3 = 5</u>, where e.g. 2w+3d=17d. In contrast to <u>2x3 = 6</u> saying that 2 **3s** can be recounted as 6 **1s**. *Neglecting English and metric units made NASA's Mars Climate Orbiter CRASH in 1999.*

Education? Two different kinds

The 1700 Enlightenment Century rooted education, but in different forms in its two republics, in North America in 1776 and in France in 1789.

- In North America, education enlightens children about their OUTSIDE world, and enlightens teenagers about their INSIDE individual talent, to be uncovered and developed through self-chosen ½year **BLOCKS** with teachers teaching only one subject in the teacher's own classroom.
- To protect its republic from its German speaking neighbors, France was forced to create institutions controlled by a strong central administration with public servants trained at elite schools with forced multi-year LINES, later copied by the German Bildung-education (and by the rest of Europe).

3x2 different kinds of math education

Mathematics in	self-chosen ½year BLOCKS	forced multi-year LINES
Pre-SETcentric	North America	UK Commonwealth
Present SETcentric	-	Continental Europe
Post-SETcentric	MATHeCADEMY.net	

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

Why teach children if they already know?

With education curing the diagnose un-educated ness, we ask: To CURE, be SURE

- 1. The diagnosed is not already cured
- 2. The diagnose is not self-referring: *teach math to learn math* Core Questions:
- What Mastery does children develop when adapting to Many?
- What could be a Question-guided <u>Child-Grounded-Curriculum</u> in Quantitative Competence?

Philosophizing the low success of 50 years of mathematics education research

Mathematics also needs a <u>COMMUNICATIVE TURN</u> where

- instead of learned INSIDE-INSIDE through its grammar, it is learned OUTSIDE-INSIDE as a INSIDE number-language communicating about OUTSIDE things and actions, thus learned through its use, and not before its use
- instead of learning about numbers, students learn how to number, and how to communicate about Many in full sentences containing:
 - 1) an **OUTSIDE** <u>subject</u>, 2) a linking <u>verb</u>, and 3) an **INSIDE** <u>predicate</u>: **T = 2x3**

So, maybe we need an **OUTSIDE-INSIDE post-SETcentric mathematics** to replace the present **INSIDE-INSIDE meta-matism** by asking:

What kind of mathematics grows from the Mastery of Many that children develop through use, and before school?

Pablo Picasso: It took me four years to paint like Raphael, but a lifetime to paint like a child

Ask a 3year old: How Old Next Time?

The answer is 4, showing 4 fingers But, reacts strongly to 4 fingers held together 2 by 2: "That is not four, that is two twos"

- <u>Observation 01</u>: Inside, the child sees what exists outside, and with units: bundles of **2s**, and 2 of them.
- <u>Observation 02</u>: The child uses a full number-language sentence as in the word-language with a SUBJECT, a VERB, and a PREDICATE:

"That is two twos", shortened to "T = 2 2s".

Creating icons: $|||| \rightarrow ||| \rightarrow | \rightarrow | \rightarrow |$

Children love making number-icons of cars, dolls, spoons, sticks. Changing four ones to one fours creates a 4-icon with four sticks. An icon contains as many sticks as it represents, if written less sloppy. Once created, icons become **UNITS** when counting in bundles, as kids do.

So, let us explore the math jungle growing from the child own 'flexible bundle-numbers'

- What is flexible numbers
- What is flexible operations
- What is flexible functions
- What is flexible equations
- What is flexible linearity
- What is flexible calculus
- What is flexible trigonometry

Counting sequences

"How to count fingers?" Using **5s** as the bundle-size, fingers can be counted as "0**B**1, 0**B**2, 0**B**3, 0**B**4, 0**B**5 – sorry, **Bundle**" and the rest can be counted in as "Bundle&1, B&2, 2B less2, 2B-1, 2B, 1left, 2left (a-leven, twe-leven)".

Follow-up activities could be counting the fingers in **3s** and **4s** and **7s**:

T = ten = 1**B**3 **7**s = 2**B**2 **4**s = 3**B**1 **3**s = 1**BB**1 **3**s.

Counting sequences with flexible bundle-numbers Ten fingers counted in threes

Outside	Action	Inside
	Count in 3s	1, 2, 3 no 1Bundle, 1B1, 1B2, 1B3 , no 2Bundle,
		2B1, 2B2, 2B3 , no 3Bundle 3B1
	Oops 3B = 1 bundle-bundle	1, 2, 1Bundle, 1B1, 1B2, 2Bundle, 2B1, 2B2, 3Bundle , no 1BundleBundle 1BB1

Counting sequences with flexible bundle-numbers Ten fingers counted in fives

Outside	Action	Inside
	Count in 5s	1, 2, 3, 4, 5 no 1Bundle, 1B1, 1B2, 1B3, 1B4, 1B5 no 2B
	BundleCount in 5s	0B1, 0B2,, 0B5 1B0, 1B1, 1B2,, 1B5 2B0
	Underload	1B less 4, 1B-3, 1B-2, 1B-1, 1B, 2B-4,, 2B
	Overload	0B1, 0B2,, 0B5, 0B6, 0B7, 0B8, 0B9, 0B10

Bundle-counting in icon-units

"How to count by bundling?"

Five fingers can be bundle-counted in pairs or triplets, allowing both an <u>OVERLOAD</u> and an <u>UNDERLOAD</u>; and reported in a number-language sentence with a subject & a verb & a predicate as e.g. T = 2 **3s**.

- ||||| ++ ++ + <u>++ ++</u> <u>++ ++</u> |
- T = 5 = 1Bundle3 2s = 2B1 2s = 3B-1 2s = 1BB1 2s
- T = 5 = 1.3 2s = 2.1 2s = 3.-1 2s = 10.1 2s

Likewise, if counting in **ten**-bundles: T = 57 = 5B7 = 4B17 = 6B-3 tens

Outside Blocks & Inside Flexible BundleNumbers

Outside	Actions	Inside
	Countin 1a	Total T
	Count in 15	T = 7
Oops!	Oops, UNBUNDLED!?	T = 2 B 1 3s T = 2.1 3s
	overload & underload	T = 1 B 4 3s T = 3 B-2 3s over-load & under-load

Observation 03. Decimal numbers and negative numbers seem natural: they just count for the unbundled

BundleCounting ten blocks in 3s

Unbundled as decimals or negatives or fractions 0.3 **4s** or 1.-1 **4s** or 3/4 **4s**

"Where to put the unbundled singles?"

When counting by bundling, the unbundled singles can be placed **NextTo** the block **OnTop** of the block

counted as a block of **1s** counted as a bundle counted in bundles

T = 2**B**3 **4s** = 2.3 **4s** *A decimal number*

T = 2 3/4 **4s** *A fraction*

Counting in tens

"Where to put the unbundled singles with tens?" Counting in tens, an outside Total of 2 tens & 3 can be described inside as T = 23 if leaving out the unit and the decimal point,

- or as:

Counting fingers in 2s with flexible bundle-numbers: Bye-bye to place-values

	Outside	Insid	e
	M	T = 5 T = 1B3 T = 2B1 T = 3B-1 (less 1)	overload normal underload
Seven ten four Three hundred seven ten four Counting formula (polynomial)		T = 74 = 7B4 = 6B T = 374 = 3BB 7B 4 = 2 T = 3 B^2 + 7 B + 4	14 = 8B-6 2BB 15B 24

BundleCounting Fingers in 2s

This can be shown with Lego bricks having different colors: a green 2-brick is B a blue 4-brick is BB a red 8-brick is BBB

BundleCounting a Total of 9 in 2s

Outside World		Inside Brain		4.5
	9 dled in 2s	From 9, 9/2 times push away 2. From 9, pull away 4 2s , leaving 1. Prediction by the recount-formula:	9-4x2	1
	with 1 bundled	T = 9 = 4B1 2s The unbundled can be placed		
	acked as 4x2 with 1 bundled	 next-to the stack iconized by a dot not decimal point; 4.1 2s; or on-top of the counted in bundles as 1 = (1/2) x 2 g counting what is missing in a full burger 	amed a ne stack iving 4½ B 2s , ndle, 5 B-1 2s.	
4B1 4½B 5B-1 2s ^k ne	olaced ext-to or on-top	This de-models decimals, fractions	& negatives.	

9/2

9 – 4x2

9/2

4.some

1

BundleCounting Fingers in 2s

Bundling-counting table

1BB0B0	1BB0B1	1BB0B2	1BB0B3	1BB0B4	1BB0B5	1BB0B6	1BB0B7	1BB0B8	1BB0B9	1BB0B10
10B0	10B1	10B2	10B3	1084	1085	1086	1087	1088	1089	10810
9B0	9B1	9B2	9B3	9B4	9B5	9B6	9B7	9B8	9B9	9B10
8B0	8B1	8B2	8B3	8B4	8B5	8B6	8B7	8B8	8B9	8B10
7B0	7B1	7B2	7B3	7B4	7B5	7B6	7B7	7B8	7B9	7810
6B0	6B1	6B2	6B3	6B4	6B5	6B6	6B7	6B8	6B9	6B10
5B0	5B1	5B2	5B3	5B4	5B5	5B6	5B7	5B8	5B9	5B10
4B0	4B1	4B2	4B3	4B4	4B5	4B6	4B7	4B8	4B9	4B10
3B0	3B1	3B2	3B3	3B4	3B5	3B6	3B7	3B8	3B9	3B10
2B0	2B1	2B2	2B3	2B4	2B5	2B6	2B7	2B8	2B9	2810
1B0	1B1	1B2	1B3	1B4	1B5	1B6	1B7	1B8	1B9	_1810
0B0	0B1	0B2	0B3	0B4	0B5	0B6	0B7	0B8	0B9	0B10

Flexible bundle-counting roots negative numbers

- Including bundles, ten fingers may be bundle-counted in fives as '0Bundle1, 0B2, 0B3, 0B4, 1B0, 1B1' that also may be counted as 0B6 or 2B less 4 or 2B-4 with an overload or an underload, thus writing 6 in three ways as a 'flexible bundle-number':
- T = 6 = 0B6 = 1B1 = 2B-4
- Using flexible bundle-numbers, ten fingers may also be counted in 5s as '1B-4, 1B-3, etc.'
- Counting on from ten, we meet 'Viking-counting' where eleven is 'one-left', twelve is 'two-left', and thirteen is 'three-ten', while 'three-twenty' becomes twenty-three.
- Counting in scores (twenties) from forty, the Danish Viking-descendants still count: half-three-scores, three-scores, half-four-scores, four-scores, and half-five-scores for ninety. Unable to understand the half-notion, the French instead counts over when expressing 87 as '4 scores and 1 ten and 7.'

Flexible BundleNumbers Ease Operations Counting in tens, T = 78 = 7B8 = 6B18 = 8B-2

110

Overload	Underload	Overload	Overload
6 5 + 2 7	6 5 - 2 7	7 x 48	336 /7
6 B 5 + 2 B 7	6 B 5 - 2 B 7	7 x 4 B 8	33 B 6 / 7
8 B 12	4 B-2	28 B 56	28 B 56 / 7
9 B 2	3 B 8	33 B 6	4 B 8
92	38	336	48 ed to car
	MATHeCADEMY.net : Math as MANYn	nath - a Natural Science about MANY	No need

Divide & Multiply & Subtract & Add may be '<u>de-modeled</u>' as Icons also

- From 9 **PUSH** away **4s** we write <u>9/4</u> <u>iconized</u> by a broom, called *division*.
- 2 times **LIFTING** the **4s** to a stack we write <u>2x4</u> <u>iconized</u> by a lift called *multiplication*.
- From 9 PULL away 2 4s' to find un-bundled we write <u>9 2x4</u>
 iconized by a rope, called *subtraction*.

The ReCount formula is the core of math & science

T = (**T**/**B**)***B** expresses proportionality when changing unit, and is all over:

Proportionality	y = c * x	
Linearity	$\Delta y = (\Delta y / \Delta x) * \Delta x = m * \Delta x$	
Local linearity	dy = (dy/dx) * dx = y' * dx	
Trigonometry	a = (a/b) * b = tanA * b	
Trade	\$ = (\$/kg) * kg = price * kg	а
Science	meter = (meter/second) * second	A h
	= speed * second	

Counting is predicted by the ReCount formula

T = (T/B) x B From a total **T**, **T/B** times, **B** is pushed away

A formula is an INSIDE **prediction**, making the number-language a language for prediction.

INSIDE Prediction: ReCounting 9 in **4s** gives 2**B**1 **4s**:

9/4	2.some
9 – 2x4	1

Recount from tens to icons: 40 = ? 5s

outside	inside				
	INSIDE, we	formulate ar	n equation to b	e solved by reco	unting 40 in 5s :
	u*5 = 40	u*5 = 40 = (40/5)*5, so			
	u	= 40/5 =	8	giving 4	0 = 8*5 = 8 5s
	Notice: 'move to	recounting o opposite	g gives the side with	equation sol	ution rule culation sign'.
we use a pegboard or a squared paper to transform the stack 4.0	u+3 = 7	u*3 = 7	u^3 = 7	3^u = 7	$df/dx = x^2$
tens to 8.0 5s. So decreasing the base will increase the height.	u = 7-3	u = 7/3	u = 3√7	u = log3(7)	f =∫x^2*dx

Recounting from icons to tens (multiplication) 3 7s = ? tens

"How to change unit from icons to tens?"

Asking 'T = 3 7s = ? tens', the recount-formula cannot be used since the calculator has no ten-button. However, it gives the answer directly by using multiplication alone: T = 3 7s = 3x7 = 21 = 2.1 tens, only it leaves out the unit and the decimal point.

Alternatively, we may use 'less-numbers', so 7 = **ten** less 3

T = 3x7 = 3 x (ten | ess 3) = 3 x ten | ess 3x3 = 3ten | ess 9 = 2ten 1 = 21,

or with 9 = **ten less 1**:

T = 3ten less (ten less1) = 2ten lessless 1 = 2ten & 1 = 21. showing that 'lessless' cancel out, so that - - is +

Recounting from icons to tens 6 7s = ? tens

ReCounting in two Units creates PerNumbers & Proportionality

ReCounting in kg & \$, we get a PerNumber 4 kg per 5\$ = 4 kg / 5\$ = 4 / 5 kg / \$. With like units, per-numbers become fractions: 4\$ / 5\$ = 4 / 5, and 4\$ / 100\$ = 4 / 100 = 4%.

With 4kg linked to 5\$, we simply recount in the per-number.

(Or we recount the units directly. Or we equate the per-numbers. Or we use the before 1900 'Rule of 3' (regula de tri) alternating the units, and, from behind, first multiply, then divide.)

Questions:

12kg = ?\$	20\$ = ?kg
$12kg = (12/4) \times 4kg$	20\$ = (20/5) x 5\$
= (12/4) x 5\$ = 15\$	= (20/5) x 4kg = 16kg
\$ = (\$/kg) x kg = 5/4 x 12 = 15	kg = (kg/\$) x \$ = 4/5 x 20 = 16
<i>u</i> /12 = 5/4, so <i>u</i> = 5/4 x 12 = 15	<i>u</i> /20 = 4/5, so <i>u</i> = 4/5 x 20 = 16
If 4kg is 5\$, then 12kg is ?\$; answer: 12x5/4 = 15	If 5\$ is 4kg, then 20\$ is ?kg; answer: 20x4/5 = 16

Proportionality shows the flexibility of 'School Math' I

Proportionality, **Q1**: "2kg costs 5\$, what does 7kg cost"; **Q2**: "What does 12\$ buy?" →1) <u>Regula de Tri (</u>rule of three)

Re-phrase with shifting units, the unknown at last. From behind, first multiply then divide.

Q1: '2kg cost 5\$, 7kg cost ?\$'. Multiply-then-divide gives the \$-number 7x5/2 = 17.5.

Q2: '<u>5</u>\$ buys 2kg, 12\$ buys ?kg'. Multiply-then-divide gives the kg-number 12x2/5 = 4.8.

→2) <u>Find the unit</u>

Q1: 1kg costs 5/2\$, so 7kg cost 7x(5/2) = 17.5\$. Q2: 1\$ buys 2/5kg, so 12\$ buys 12x(2/5) = 4.8kg → 3) Cross multiplication

Q1: 2/5 = 7/*u*, so 2**u* = 7*5, *u* = (7*5)/2 = 17.5. **Q2**: 2/5 = *u*/12, so 5**u* = 12*2, *u* = (12*2)/5 = 4.8

→4) '<u>Re-counting</u>' in the 'per-number' 2kg/5\$ coming from 'double-counting' the total T. Q1: T = 7kg = (7/2)x2kg = (7/2)x5\$ = 17.5\$; Q2: T = 12\$ = <math>(12/5)x5\$ = (12/5)x2kg = 4.8kg.

Proportionality shows the flexibility of 'School Math' II

- → 5) <u>Modeling</u> with linear functions using group theory from abstract algebra.
- A linear function f(x) = c*x from the set of positive kg-numbers to the set of positive \$-numbers, has the domain DM = {x∈R | x>0}.
- Knowing that f(2) = c*2 = 5, this equation is solved by multiplying with the inverse element to 2 on both sides, and applying the associative law, and the definition of an inverse element, and of the neutral element under multiplication:
 c*2 = 5 (c*2)*½ = 5*½ c*(2*½) = 5/2 c*1 = 5/2 c = 5/2.
- With $f(x) = 5/2^*x$, the inverse function is $f^{-1}(x) = 2/5^*x$.
- With 7kg, the answer is f(7) = 5/2*7 = 17.5\$.
- With 12\$, the answer is $f^{-1}(12) = 2/5*12 = 4.8$ kg.

Double-counting gives per-numbers in STEM multiplication formulas I

STEM typically contains multiplication formulas with per-numbers coming from double-counting.

Examples:

- kg = (kg/cubic-meter) x cubic-meter = density x cubic-meter
- force = (force/square-meter) x square-meter = pressure x square-meter
- meter = (meter/sec) x sec = velocity x sec
- energy = (energy/sec) x sec = Watt x sec
- energy = (energy/kg) x kg = heat x kg

Double-counting gives per-numbers in STEM multiplication formulas II

Extra STEM examples:

- gram = (gram/mole) x mole = molar mass x mole;
- Δ momentum = (Δ momentum/sec) x sec = force x sec;
- Δ energy = (Δ energy/ meter) x meter = force x meter = work;
- energy/sec = (energy/charge) x (charge/sec) or Watt = Volt x Amp;
- dollar = (dollar/hour) x hour = wage x hour;
- dollar = (dollar/meter) x meter = rate x meter
- dollar = (dollar/kg) x kg = price x kg.

With like Units, PerNumbers become Fractions, both Operators Needing Numbers to Become Numbers

Outside trial	Inside prediction
In a box filled with 2 red per 3 apples, re-counting reds and apples gives the FRACTION 2/3 reds/apples. How many red apples among 12 apples?	Q: ? red in 12 apples. A: Recount 12 in 3s (the per-number) $T = 12 a = (12/3) \times 3a$ gives $(12/3) \times 2r = 8$ red apples Or, we equal the per-numbers: u/12 = 2/3; so $u = 2/3 \times 12 = 8$ Moving 12 to opposite side with opposite sign

ReCounting Sides in a Block gives Trigonometry

Geometry means to measure earth in Greek. The earth can be divided in triangles; that can be divided in right triangles; that can be seen as <u>a block halved by its</u> <u>diagonal</u> thus having three sides: <u>the base b</u>, <u>the height a</u> and <u>the diagonal c</u> connected by the Pythagoras formula. And connected with the angles by pernumber formulas re-counting the sides pairwise.

A + **B** + **C** = 180

a*a + b*b = c*c (the Pythagoras formula)

a = (a/c) x c = sinA x c; tanA = a/b =
$$\Delta y/\Delta x$$
 = gradient

Circle: circum./diam. = π = n*tan(180/n) for n large

Once Counted & Recounted, Totals may Add

BUT:	NextTo	or	OnTop
4 5 s +	- 2 3s = 3B2 8s		4 5s + 2 3s = 5B1 5s
The areas are integrated		Th	e units are changed to be the same
Adding	areas = Integration	Cha	nge unit = ReCounting = Proportionality

MATHeCADEMY.net : Math as MANYmath - a Natural Science about MANY

Next-to addition

"With T1 = 4 5s and T2 = 2 3s, what is T1+T2 when added next-to as 8s?"

<u>Outside</u>, next-to addition geometrically means adding areas. Next-to addition is also called integral calculus.

<u>Inside</u>, the recount formula algebraically predicts the result. Here multiplication precedes addition.

 $T = (T/B) \times B$

= ((4x5 + 2x3)/8) x 8 = 3.2 8s

(4x5 + 2x3)/8 3.some (4x5 + 2x3) - 3x8 2

"If T1 = 2 3s and T2 add next-to as 4 7s, what is T2?" Outside, we remove the initial block T1 and recount the rest in **4s**. Thus reversed next-to addition geometrically finds area-differences. Reversed next-to addition is also called differential calculus. Inside, the recount formula algebraically predicts the result. Here subtraction precedes division; which is natural as reversed integration. $T2 = (T2/B) \times B$

$$= ((4x7 - 2x3)/4) \times 4 = 5.2$$
 4s

(4x7 – 2x3)/4 5.some (4x7 – 2x3) – 5x4 2

On-top addition

"With T1 = 4 5s and T2 = 2 3s, what is T1+T2 when added on-top?"

<u>Outside</u>, on-top addition geometrically means changing units. On-top addition thus often involves recounting (proportionality).

T = 4 5s + 2 3s = 4 5s + 1.1 5s = 5.1 5s

T = 4 5s + 2 3s = 6.2 3s + 2 3s = 8.2 3s

<u>Inside</u>, the recount formula algebraically predicts the result. Here again, multiplication precedes addition.

$$T = (T/B) \times B$$

= ((4x5 + 2x3)/5) x 5 = 5.1 **5**s

(4x5 + 2x3)/5 5.some (4x5 + 2x3) - 5x5 1

"T1 = 2 **3s** and how many **5s** (T2) add on-top as 4 **5s**?" <u>Outside</u>, we remove the initial block T1 and recount the rest in **5s**. Thus reversed next-to addition geometrically finds area-differences. Reversed on-top addition is also called differential calculus. <u>Inside</u>, the recount formula algebraically predicts the result. Here again, subtraction precedes division.

 $T2 = (T2/B) \times B$

Reversed Addition = Solving Equations

OppoSite Side	NextTo	
2 x ? = 8 = (8/2) x 2	2 + ? = 8 = (8-2) + 2	2 3s + ? 5s = 3.2 8s
? = 8/2	? = 8-2	? = (3.2 8s – 2 3s)/5
Solved by ReCounting	Solved by ReStacking	Solved by differentiation: $(T-T1)/5 = \Delta T/5$

Hymn to Equations

Equations are the best we know, they are solved by isolation. But first, the bracket must be placed around multiplication. We change the sign and take away and only x itself will stay. We just keep on moving, we never give up. So feed us equations, we don't want to stop!

Adding PerNumbers as Areas (Integral Calculus)

"2kg at 3\$/kg + 4kg at 5\$/kg = 6kg at ? \$/kg?"

2 kg at **3 \$/kg** + 4 kg at **5 \$/kg** (2+4) kg at **? \$/kg**

- Unit-numbers add on-top.
- Per-numbers must be multiplied to unit-numbers, thus adding as **areas** under the per-number graph.
- Here, multiplication before addition
- So, per-numbers and fractions are not numbers, but operators needing numbers to be numbers.

Subtracting PerNumbers (Differentiation)

"2kg at 3\$/kg + 4kg at what = 6kg at 5\$/kg?"

2 kg at 3 \$/kg + 4 kg at ? \$/kg 6 kg at 5 \$/kg

Outside, we remove the initial 2x3 block and recount the rest in 4s. Geometrically, reversed per-number addition means subtracting areas to be reshaped, called differential calculus.

Inside, the recount-formula algebraically predicts the result. Here subtraction (giving a change, Δ) comes before division.

Geometry & Algebra, Hand in Hand

Four Ways to Unite and Split a Total

A number-formula $T = 345 = 3BB4B5 = 3*B^2 + 4*B + 5$ (a polynomial) shows the 4 ways to unite: +, *, ^, nextto block-addition (integration). <u>Addition</u> and <u>multiplication</u> unite changing and constant unit-numbers. <u>Integration</u> and <u>power</u> unite changing and constant per-numbers. We might call this beautiful simplicity the 'Algebra Square' since in Arabic, algebra means to reunite. • The 4 uniting operations each has a reverse splitting operation: Addition has <u>subtraction</u> (–), and multiplication has <u>division</u> (/). Power has factor-finding (<u>root</u>, V) and factor-counting (<u>logarithm</u>, log). Integration has per-number finding (<u>differentiation</u> dT/dn = T'). Reversing operations is solving equations, done by moving to **opposite side** with **opposite sign**.

Operations unite / <i>split into</i>	changing	constant
Unit-numbers	T = a + n	T = a * n
m, s, \$, kg	T-a=n	T/n = a
Per-numbers	T =∫a dn	T = a^n
m/s, \$/kg, m/(100m) = %	dT/dn = a	$log_a T = n, n \sqrt{T} = a$

Adding or Subtracting Unspecified Numbers

"Only add like units, so how to add $T = 4ab^2 + 6abc$?" Here units come from folding (factoring): a factor-filter

- $T = 4ab^2 + 6abc = T1 + T2$
 - $= 2 \times 2 \times a \times b \times b + 2 \times 3 \times a \times b \times c$
 - $= 2 \times b \times (2 \times a \times b) + 3 \times c \times (2 \times a \times b)$
 - = (2*b*+3*c*) x **2***ab*
 - = 2b+3c **2ab**s

T1	2	2	a	b	b
T2	2	3	а	b	С
unit	2		а	b	
T1 left		2			b
T2 left		3			С

What is 3/5 of 2/4

What is 3 per 5 of 2 per 4?

Since we are going to recount in both 5s and 4s, we might take 20 as the total.

2per4 of 20 is what?

Well, recounting 20 in 4s we get $20 = (20/4)^{*4}$ giving $(20/4)^{*2} = 10$ 3per 5 of ten is what?

Well, recounting 10 in 5s we get 10 = (10/5)*5 giving (10/5)*3 = 6

So 3 per 5 of 2 per 4 of 20 gives 6 per 20. *Test: 6 = (6/20)*20 = 6 per 20 of 20*

So 3 per 5 of 2 per 4 is 6 per 20

Discussion: What is the Difference?

		Flexible many-math	Traditional math
Digits	4	Icon with four strokes	Symbol
Numbers	456	Three numberings, 4 BB 5 B 6	One number
Division	8/2	8 counted in 2s	8 split in 2
Multiplication	6 x 7	6 7s or 4 B 2 tens	42
Addition	2+3	2 4s + 3 5s = 2B3 9s 2 4s + 3 5s = 4B1 5s	2+3 = 5
Equations	3 x <i>u</i> = 12	Opposite side & sign u x 3 = 12 = (12/3) x 3 u = 12/3 = 4	Neutralize $(3 \times u) \times 1/3 = 12 \times 1/3$ $(u \times 3) \times 1/3 = 4$ $u \times (3 \times 1/3) = 4$ $u \times 1 = 4$, so $u = 4$
Fractions	2/3	Per-numbers, i.e. operators, needing numbers to become numbers: 1/2 of 2 + 2/3 of 3 IS 3/5 of 5	Numbers 1/2 + 2/3 IS 7/6

Is ManyMatics Different

Same Question	Many-Math	Trad. Mathe-Matics
Digits	Icons, different from letters	Symbols like letters
Natural numbers	2.3 tens	23
Fractions	Per-numbers needing a	Rational numbers
	number to produce a number	
Per-numbers	Double-counting	Not accepted
Operations	Icons for the counting process	Mappings from a set-product
		to a set
Order of operations	/, x, -, +	+, -, x, /

Is ManyMatics Different

Addition	On-top and next-to	Only on-top
Integration	Preschool: Next-to addition	Last year in high school,
	Middle school: Adding piece-wise	for the few
	constant per-numbers	
	High school: Adding locally constant	
	per-numbers	
A formula	A stand-by calculation with	An example of a function that is
	numbers and letters	an example of a relation in a
		set-product where first
		component identity implies
		second component identity
Algebra	Re-unite constant and variable	A search for patterns
	unit-numbers and per-numbers	

Is ManyMatics Different

The root of	The physical fact Many	The metaphysical invention Set
Mathematics		
A concept	An abstraction from examples	An example of an abstraction
		(MetaMatics)
How correct is	2x3 = 6 is correct by nature since	Both correct by nature
2+3 = 5 and	2 3s can be recounted as 6 1s.	(MatheMatism)
2x3 = 6	2+3 = 5 is true in a library but not	
	in a laboratory: 2w+3d = 17d, etc.	
An equation	A reversed operation	An example of an equivalence
		relation between two number-
		names

Is Solving Equations Different?

ManyMatics

2 + u = 5 = (5-2) + 2	Solved by re-stacking 5	2 x u = 5 = (5/2) x 2	Solved by re-bundling 5
u = 5-2 = 3	Test: 2 + 3 = 5 OK	$u = 5/2 = 2\frac{1}{2}$	Test: 2 x 3 = 6 OK

MatheMatics

$\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$	2 + u = 5	Addition has 0 as its neutral element, and 2 has -2 as its inverse element		
	(2 + u) + (-2) = 5 + (-2)	Adding 2's inverse element to both number-names		
	(u + 2) + (-2) = 3	Applying the commutative law to u + 2, 3 is the short number-name for 5+(-2)		
	u + (2 + (-2)) = 3	Applying the associative law		
	u + 0 = 3	Applying the definition of an inverse element		
	u = 3	Applying the definition of a neutral element. With arrows a test is not needed.		

Recounting looks like Dienes MultiBase Blocks

- "Dienes' name is synonymous with the Multi-base blocks (also known as Dienes blocks) which he invented for the teaching of place value.
- He also is the inventor of Algebraic materials and logic blocks, which sowed the seeds of contemporary uses of manipulative materials in mathematics instruction.
- Dienes' place is unique in the field of mathematics education because of his theories on how mathematical structures can be taught from the early grades onwards using multiple embodiments through manipulatives, games, stories and dance."

(http://www.zoltandienes.com/about/)

Dienes on Numbers and MultiBase Blocks

"The position of the written digits in a written number tells us whether they are counting singles or tens or hundreds or higher powers. This is why our system of numbering, introduced in the middle ages by Arabs, is called the place value system. My contention has been, that in order to fully understand how the system works, we have to understand the concept of power. (..) In school, when young children learn how to write numbers, they use the base ten exclusively and they only use the exponents zero and one (namely denoting units and tens), since for some time they do not go beyond two digit numbers. So néither the base nor the exponent are varied, and it is a small wonder that children have trouble in understanding the place value convention. (..) Educators today use the "multibase blocks", but most of them only use the base ten, yet they call the set "multibase". These educators miss the point of the material entirely."

(What is a base?, http://www.zoltandienes.com/academic-articles/)

ManyMatics turns MetaMatics upside down

Dienes teaches the 1D place value system with 3D, 4D, etc. blocks to illustrate the importance of the power concept.

• ManyMatics teaches decimal numbers with units and stays with 2D to illustrate the importance of the block concept and adding areas.

Dienes wants to bring examples of abstractions to the classroom

- ManyMatics wants to build abstractions from concrete examples Dienes teaches top-down 'MetaMatics' derived from the concept Set
- ManyMatics is a bottom-up natural science about the physical fact Many; and sees Set as a meaningless concept because of Russell's set-paradox.

Conclusion I

What Mastery of Many does the child have already?

 Children typically see Many as blocks with a number af bundles, and use flexible numbers with units and with over- or underloads

In ManyMath, BLOCKS are fundamental:

- in numbers: 456 = three blocks
- in algebra: adding blocks next-to or on-top
- in geometry: recounting half-blocks

Conclusion II

ux2 = 8 = 8/2x2

SO

u = 8/2

We may ask: Can children discover/invent mathematics themselves and obtain a concrete exemplified understanding?

Based upon our observations, the answer is YES, if we

- de-model digits as icons with as many sticks as they represent
- use the flexible bundle-numbers children develop when adapting to Many
- de-model operations as means for bundle-counting 8 as 8/2 2s, leading directly to the re-count formula T = (T/B) x B, used to change units, and to
- solve equations as 'How many 2s in 8?' by recounting 8 in 2s
- use re-counting to construct per-numbers, fractions and trigonometry
- add both next-to and on-top, making calculus be addition of per-numbers

The child's own flexible math curriculum

1) Digits are (sloppy) icons, with as many sticks as they represent.

- 2) Totals are counted by bundling, giving OUTSIDE geometrical multi-blocks,& (when turned to hide the units behind) INSIDE algebraic bundle-numbers.
- 3) Operations are **INSIDE** icons, showing the 3 **OUTSIDE** counting steps: PUSHING & LIFTING bundles & PULLING stacks to find the unbundled ones.
- 4) The operation order is division first, then multiplication, then subtraction. Addition next-to & on-top comes later after totals are counted & re-counted.
- 5) Counting & re-counting is big fun, when predicted by a calculator with the recount formula: **T** = (**T**/**B**)**xB** (from T, T/B times, Bs can be taken away)

6.some

69

MatheMatics: Unmask Yourself, Please

- In Greek you mean 'knowledge'. You were chosen as a common label for 4 activities: Music, Astronomy, Geometry & Arithmetic. Later only 2 activities remained: Geometry and Algebra
- Then Set transformed you from a natural science about the physical fact Many to a metaphysical subject, MetaMatism, combining MetaMatics and MatheMatism
- So please, unmask your true identity, and tell us how you would like to be presented in education:
- MetaMatism for the few or ManyMatics for the many.

Difference-research finds differences making a difference Action Learning & Action Research

MATHeCADEMY.net | MAT ×

→ C mathecademy.net

Inspiration from MATHeCADEMY.net

Teaches Teachers to Teach MATHEmatics as **MANY**matics, a Natural Science about MANY. The **CATS** method: To learn Math Count & Add in Time & Space

MATHeCADEMY.net MATHematics as MANYmatics, a Natural Science about MANY - the CATS approach: Count & Add in Time & Space HOME INTRO COUNT ADD TIME SPACE PAPERS PRESCHOOL VARIOUS BOOK ManyMatics: ReCount - don't Add. 11111 III Teach Multiplication before Addition & Add NextTo before OnTop H 2 3 5 6 8 We ACT to deal with the outside world **ReCounting Seminars** We MATH to deal with the natural fact MANY ??? **Rejected Paper** Oops, sorry, math is not an action word! Avoid DysCalCulia We COUNT & ADD to deal with MANY. ReCount - don't Add Booklet • Count & ReCount:

> T = [1 | 1 | 1 | 1 = ||| ||| || = |||) || = 2,1 3s T = 2.1 3s = 1.4 3s = 3.-2 3s (Overload or Deficit) T = 2.1 3s = 1.2 5s = 3.1 2s = 11.1 2s T = 3×8 = 3 8s = 2.6 9s = 2.4 tens, or the sloppy version 24

9
8 MicroCurricula for Action Learning & Research

- C1. Create Icons
- C2. Count in Icons (Rational Numbers)
- C3. ReCount in the Same Icon (Negative Numbers)
- C4. ReCount in a Different Icon (Proportionality)
- A1. Add OnTop (Proportionality)
- A2. Add NextTo (Integrate)
- A3. Reverse Adding OnTop (Solve Equations)
- A4. Reverse Adding NextTo (Differentiate)

ReCount – don't Add Booklet, free to Download

Preface

Contents

ReCount don't Add

MatheMatics as ManyMatics for NewComers & LateComers & Migrants to Avoid DysCalCulia

The Direct Way to Core Mathematics: Proportionality & Fractions & Calculus & Solving Equations

> Allan.Tarp MATHeCADEMY.net

01. From Sticks to Icons1
02. Counting in Icons
03. ReCounting in Icons
04. ReCounting in a new Unit7
05. ReCounting in the same Unit9
06. ReCounting in BundleBundles
07. ReCounting in Tens on Squared Paper or an Abacus
08. ReCounting from Tens
09. ReCounting Large Numbers in Tens
10. DoubleCounting with PerNumbers
11. DoubleCounting with Fractions and Percentages
12. Adding OnTop
13. Reversed Adding OnTop
14. Adding NextTo
15. Reversed Adding NextTo
16. Adding Tens
17. Reversed Adding Tens
18. Recounting Solves Equations

03. ReCounting in Icons

Q?		Do	Calculator	
	Line	T=		
	Count	1, 2, 3, 4, B, 1B1, 1B2, 1B3, <u>1B4</u>		
9	Bundle	T=+++++	9/5	1.some
in 5s	Stack		9-1*5	4
	Cup	T = 1)4		
	Answer	T = 9 = 1.4 5s		
	Line	T=		
	Count	1, 2, 3, B, 1B1, 1B2, 1B3, 2B, <u>2B1</u>		
9	Bundle	T=++++++++	9/4	2.some
in 4s	Cup	T = 2)1	9-2*4	1
	Stack			
	Answer	<u>T = 9 = 2.1 4s</u>		
	Line			
	Count			
9	Bundle		9/	
in 3s	Cup		9 -	
	Stack			
	Answer			
	Line			
	Count			
8	Bundle		8	
in 4s	Cup		8	
	Stack			
	Answer			
	Line			
	Count			
8	Bundle		8	
in 3s	Cup		8	
	Stack			
	Answer			

Teacher Training in CATS ManyMatics

со	NT1.pdf - Adobe Reader 📃 🖃 🔤
2	dit View Window Help
·]	4 50% 🔹 🛃 🗧 Fill & Sign Comment
	<text></text>

75

Question Guided Teacher Education

MATHeCADEMY.net

Teaches Teachers to Teach MatheMatics as ManyMath, a Natural Science about MANY.

- To learn Math, Count & Add MANY, using the CATS method:
 - Count & Add in Time & Space
 - Primary: C1 & A1 & T1 & S1
 - Secondary: C2 & A2 & T2 & S2

MATHeCADEMY.net a VIRUSeCADEMY: ask Many, not the Instructor

SUMMARY

	QUESTIONS	ANSWERS		
C1	How to count Many?	By bundling and stacking the total T predicted by $T = (T/b)*b$		
COUNT	How to recount 8 in 3s: $T=8=?$ 3s	T = 8 = ?*3 = ?3s, $T = 8 = (8/3)*3 = 2*3+2 = 2*3+2/3*3 = 22/3*3$		
	How to recount 6kg in \$: T=6kg=?\$	If $4kg = 2$ \$ then $6kg = (6/4)*4kg = (6/4)*2$ \$ = 3\$		
	How to count in standard bundles?	Bundling bundles gives a multiple stack, a stock or polynomial:		
		$T = 423 = 4BundleBundle+2Bundle+3 = 4tenten2ten3 = 4*B^2+2*B+3$		
C2	How can we count possibilities?	By using the numbers in Pascal's triangle		
COUNT	How can we predict unpredictable	We 'post-dict' that the average number is 8.2 with the deviation 2.3.		
	numbers?	We 'pre-dict' that the next number, with 95% probability, will fall in the		
		confidence interval 8.2 ± 4.6 (average ± 2 *deviation)		
A1	How to add stacks concretely?	By restacking overloads predicted by the restack-equation T= (T-b)+b		
ADD	T=27+16= 2ten7+1ten6= 3ten13=?	T = 27+16 = 2 ten 7+1 ten 6 = 3 ten 13 = 3 ten 1 ten 3 = 4 ten 3 = 43		
	How to add stacks abstractly?	Vertical calculation uses carrying. Horizontal calculation uses FOIL		
A2	What is a prime number?	Fold-numbers can be folded: 10=2fold5. Prime-numbers cannot: 5=1fold5		
ADD	What is a per-number?	Per-numbers occur when counting, when pricing and when splitting.		
	How to add per-numbers?	The \$/day-number a is multiplied with the day-number b before added to		
		the total $-number T$: $T2 = T1 + a*b$		
T1	How can counting & adding be	By calculating backward, i.e. by moving a number to the other side of the		
TIME	reversed ?	equation sign and reversing its calculation sign.		
	Counting ? 3s and adding 2 gave 14.	x*3+2=14 is reversed to $x = (14-2)/3$		
	Can all calculations be reversed?	Yes. x+a=b is reversed to x=b-a, x*a=b is reversed to x=b/a, x^a=b is		
		reversed to x=a√b, a^x=b is reversed to x=logb/loga		
T2	How to predict the terminal number	By using constant change-equations:		
TIME	when the change is constant?	If Ko = 30 and $\Delta K/n = a = 2$, then K7 = Ko+a*n = 30+2*7 = 44		
		If Ko = 30 and $\Delta K/K = r = 2\%$, then K7= Ko*(1+r)^n= 30*1.02^7= 34.46		
	How to predict the terminal number	By solving a variable change-equation:		
	when the change is variable, but	If Ko = 30 and dK/dx = K', then $\Delta K = K-Ko = JK'dx$		
	predictable?			
S1	How to count plane and spatial	By using a ruler, a protractor and a triangular shape.		
SPACE	properties of stacks and boxes and	By the 3 Greek Pythagoras', mini, midi & maxi		
	round objects?	By the 3 Arabic recount-equations: sinA=a/c, cosA=b/c, tanA=a/b		
S2	How to predict the position of	By using a coordinate-system: If $Po(x,y) = (3,4)$ and if $\Delta y/\Delta x = 2$, then		
SPACE	points and lines?	$P1(8,y) = P1(x+\Delta x, y+\Delta y) = P1((8-3)+3, 4+2*(8-3)) = (8,14)$		
	How to use the new calculation	Computers can calculate a set of numbers (vectors) and a set of vectors		
	technology?	(matrices)		
QL	What is quantitative literature?	Quantitative literature tells about Many in time and space		
	Does quantitative literature also	The word and the number language share genres:		
	have the 3 different genres: fact,	Fact is a since-so calculation or a room-calculation		
	fiction and fiddle?	Fiction is an if-then calculation or a rate-calculation		
		Fiddle is a so-what calculation or a risk-calculation		

1day Skype Seminar: To avoid Math Dislike, ReCount in flexible BundleNumbers

Action Learning on the child's own 2D NumberLanguage as observed when showing 4 fingers together 2 by 2 makes a 3-year-old child say 'No, that is not 4, that is 2 2s.'

09-11. Listening and Discussing: Good & Bad & Evil MatheMatics

Bad MatheMatism is true inside but rarely outside classrooms.

Evil MetaMatics presents a concept TopDown as an example instead of BottomUp as an abstraction. **Good ManyMatics**, a natural science Many mastering Many by ReCounting & adding OnTop/NextTo. <u>2D Bundle-Numbers with units as a hidden alternative to the traditional 1D Line Numbers without</u> *Adding 1D Line Numbers without units may create Math Dislike*.

11-13. Skype Conference. Lunch.

13-15. Doing: Trying out the 'ReCount – don't Add' booklet to experience proportionality & calculus & solving equations as golden LearningOpportunities in ReCounting and NextTo Addition.

15-16. Coffee. Skype Conference.

PYRAMIDeDUCATION

To learn MATH: Count&Add MANY Always ask Many, not the Instructor MATHeCADEMY.net - a VIRUSeCADEMY

In PYRAMIDeDUCATION a group of 8 teachers are organized in

2 teams of 4 choosing 2 instructors and 3 pairs by turn.

- Each pair works together to solve Count&Add problems.
- The coach assists the instructors when instructing their team and when correcting the Count&Add assignments.
- Each teacher pays by coaching a new group of 8 teachers.

Watch MrAlTarp YouTube Videos

- Postmodern Mathematics Debate
- CupCounting removes Math Dislike
- IconCounting & NextTo-Addition
- PreSchool Mathematics
- Fractions
- PreCalculus
- Calculus
- Mandarin Mathematics
- World History

Seminar on the Childs own Number Language *ReCount - don't Add*

From MatheMatism to ManyMatics

Thank You for Your Time

Allan.Tarp@MATHeCADEMY.net Free Uni Franchise

Theoretical Background

Tarp, A. (2018). Mastering Many by counting and recounting before adding on-top and next-to. *Journal of Math Education, March 2018, 11*(1), 103-117.

Tarp, A. (2020). De-modeling numbers, operations and equations: from inside-inside to outside-inside understanding. *Ho Chi Minh City University of Education Journal of Science 17*(3), 453-466.

