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What is the real goal of mathematics education?
Inspiration from Grand Theory

PHILOSOPHY

• Is mathematics about essence or existence? (Heidegger)

SOCIOLOGY 

• Institutions as solutions to common problems may be tempting, but

• Beware of a goal displacement (Bauman) where a means becomes a 
goal instead, and creates a patronizing truth regime (Foucault)

PSYCHOLOGY

• What to learn: essence (Vygotsky), or existence (Piaget) 

• Beware of using fear of exclusion to keep a truth regime in power
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From STEM over STEAM to STEEM
From Hard to Easy - if rooting Math in Economics

Math is hard

• Teach STEM. It motivates reasons to learn math, before applying it. 

Oops, Math is still hard

• Teach STEAM to sugar-coat a desire for learning it, before applying it. 

Oops, Math is still hard

Philosophy: Math is hard, until existence precedes essence (existentialism)

• Teach STEEM to master Math by applying rooting it in existence.

Let’s master Math through its original root, Economics

Let’s respect that Math is a natural science about Many
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How do humans master Many? 
Ask a 3year old: how old next time?
The answer is 4, showing 4 fingers

But, reacting strongly to 4 fingers held together 2 by 2: 

“That is not four, that is two twos” 

Observation 1: Inside, children see what exists outside, bundles of 2s, in 
space; and 2 of them, in time. So children use bundle-numbers with units.

Observation 2: The child uses a full number-language sentence as in the 
word-language with a SUBJECT, a VERB, and a PREDICATE: 

”That is two twos”, shortened to ”T = 2 2s”.

I I I I

II  II
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Economics: Sharing what we each produce

To survive, humans must labor, work, and act (Arendt)

So, the human condition is: eat, produce, and create

Production = productivity * persons * hours

Productivity = what a person produces per hour

Productivity increases with new technology (numbers, calculators, etc.) 

Productivity increases when we produce what we master best

But at what exchange per-number?
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Productivity step 1: 
Creating icons:     I I I I → IIII →         →

Uniting many 1s into 1 many-icon.
Uniting four ones into one fours creates a 4-icon with four sticks. 
An icon contains as many sticks as it represents, if written less sloppy. 
Once created, icons become UNITS when counting in bundles, as kids do.
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• From 9 PUSH away 4s we write 9/4                                                                              

iconizing a broom, called division. 

• 2 times LIFT the 4s to a stack we write 2x4

iconizing a lift called multiplication.

• “From 9 PULL away 2 4s to find un-bundled” we write 

9 – 2x4 iconizing a rope, called subtraction.

• UNITE next-to or on-top we write A+C

iconizing the two directions, called addition.

Productivity step 2:
Predict counting with icon-operations
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Productivity step 3:                                            8 = (8/2)x2
Shifting units creates a     Recount-formula T = (T/B)xB

Shift unit from 1s to 2s:      8    = ? 2s

Bundle-counting:                 8     = 4 2s

Predict by a calculation:     8/2 = 4

Recount result:                     8 = (8/2)x2

Recount-Formula:                T = (T/B)xB ”From T, T/B times, B is pushed away”

Equations         Proportionality

8/2             8                                     T/B T

2                                                     B

Shifting unit y = k * x
Linearity Dy = (Dy/Dx) * Dx = m * Dx

Local linearity dy = (dy/dx) * dx = y’ * dx

Trigonometry h = (h/b) * b = tanA * b

Trade $ = ($/kg) * kg = price * kg

STEM meter = (meter/sec) * sec
= speed * secObservation: Recounting in Bundle-numbers contains core mathematics & STEM
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The Recount-formula solves equations

u + 2 = 8 u x 2 = 8 u^8 = 2 2^u = 8

u = 8 – 2 u = 8/2 u = 
8
2 u = log28

Asking “How many 2s in 8” gives the equation “u*2 = 8” 
that is solved by recounting 8 in 2s:

u x 2 = 8    = (8/2) x 2 
u = 8/2

Solve equations: MOVE to OPPOSITE side with OPPOSITE calculation sign
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The Math-core is seen on a calculator

Numbers: rooted in degrees of many; and bundle-counted in tens

Operations: predict counting results

• 8/2 = 4:        from 8 push away 2 can be done 4 times

• 4x2 = 8:       4 times lift 2s totals 8

• 9-4x2 = 1:    from 9 pull away 4 2s leaves 1

• 1 2s + 2 3s = 1B3 5s or 2B2 3s:    stacks may unite next-to and on-top

• 3^2 = 9:        a bundle-of-bundles of 3s totals 9

• 16 = 4:       a 1.6-by-10 box may be reshaped into a 4-by-4 square 
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How Many did I produce? 
Totals become stacks when Bundle-counted

Twelve:   I I I I I I I I I I I I

Viking language: twe-lve = ”twe left”, twen-ty = ”twen-ti”)

• Fives (hands):    T = 2Bundle2 = 1B7 (over-load)= 3B-3 (under-load)

• Scores:                T = 1B-8 = ½B2

• Dozens:               T = 1B0 = ½B6

• Tens:                    T = 1B2 = 1.2 B = 2B-8 = ½B7 T = 345 = 3BB4B5 = 2BB14B5

• Sevens (weeks): T = 1B5 = 2B-2

• Threes:                T = 4B0 = 5B-3 = 3B3 But 3B = 1BB, so T = 1BB1B0 = 1BB0B3

• Twos (pairs):       T = 6B0                        But 2B = 1BB, and 2BB = 1BBB, so T = 1BBB1BB
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Counting in tens, how to see the unbundled?

Counting in tens, a Total of 2 tens & 3 can be described as T = 23, if 

• leaving out the unit and the decimal point,

• teaching a place-value system, silencing that 100 is 1 bundle-bundle 

- or as:

T = 2.3 tens T = 3.-7 tens T = 2  3/10 tens

T = 2B3 tens T = 3B-7 tens T = 2 3/10 B tens
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Flexible Bundle-numbers ease calculations. 
Counting in tens, T = 78 = 7B8 = 6B18 = 8B-2
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Overload Underload Overload Overload

6 5  
+ 2 7   

6 5  
- 2 7   

7 x 48 336 /7

6B5 
+ 2B7 

6B5 
- 2B7 

7 x 4B8 33B6 /7

8B12 4B-2 28B56 28B56 /7

9B2 3B8 33B6 4B8

92 38 336 48



Recounting in tens: Multiplication tables

6 7s = ? tens On a pegboard, 2 rubber bands form 
a ten-by-ten square, 
and 2 bands form a 6-by-7 block.
With less-numbers, 6 7s is ten tens, 
less 4 tens, less 3 tens, 
plus 3 4s that is removed twice:
T = 6 7s = 6 x 7 = (B-4) x (B-3) 

= 10B – 4B – 3B + 4 3s removed twice 

= 3B12 = 4B2 = 42 
Interesting: negative x negative = positive!

This roots the algebraic formula 
(a – b) x (c – d) = a x c – a x d – b x c + b x d

6 x 7 gives the less-numbers 4 & 3. So from 100, we subtract their sum, and add their product.
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Internal exchange in other units

A total of 12 may be recounted in other units

• T = 12 1s

• T =   6 2s

• T =   4 3s

• T =   3 4s

• T =   2 6s

• T =   1 12s
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Working together

3 men can dig a ditch in 4 hours. 

• How many men are needed for 6 hours?

• How many hours are needed with 5 men?

Production = (productivity)*men*hours = 3*4 = 12 man-hours

• 12 = men*6; but 12 = (12/6)*6, so men = 12/6 = 2

• 12 = 5*hours; but 12 = (12/5)*5, so hours = 12/5 = 2.4
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External exchange with a per-number

I have 8 3s, how many 4s can I buy?

• Exchange per-number: 4 3s per 3 4s

• So I count my 3s in 4s

• T = 8 3s = (8/4)*4 3s = (8/4)*3 4s = 6 4s

I have 8 apples, how many pears can I buy?

• Exchange per-number: 4 apples per 3 pears

• So I count my apples in 4s

• T = 8 apples = (8/4)*4 apples = (8/4)*3 pears = 6 pears
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ReCounting in two units creates 
PerNumbers & Proportionality

ReCounting in kg & $, we get a PerNumber 4kg per 5$ = 4kg/5$ = 4/5 kg/$.
With like units, per-numbers become fractions: 4$/5$ = 4/5, and 4$/100$ = 4/100 = 4%.

With 4kg linked to 5$, we simply recount in the per-number. 

(Or we recount the units directly. Or we equate the per-numbers. Or we use the before 1900

‘Rule of 3’ (Regula de Tri) alternating the units, and, from behind, first multiply, then divide.)

Questions:

12kg  =  ?$ 20$  =  ?kg

12kg  =  (12/4) x 4kg 

=  (12/4) x 5$  =  15$

20$  =  (20/5) x 5$ 

=  (20/5) x 4kg  =  16kg
$ = ($/kg) x kg = 5/4 x 12 = 15 kg = (kg/$) x $ = 4/5 x 20 = 16

u/12 = 5/4, so u = 5/4 x 12 = 15 u/20 = 4/5, so u = 4/5 x 20 = 16

If 4kg is 5$, then 12kg is ?$; answer: 12x5/4 = 15 If 5$ is 4kg, then 20$ is ?kg; answer: 20x4/5 = 16

18



Taking stock roots proportionality & calculus

With the two stacks, 5 2s and 3 4s, 
what is the total stock?

Add on-top
Counting in 4s, we shift units by recounting the 5 2s in 4s
Shifting unit = proportionality, linearity

Add next-to
Counted in 6s, we add by areas, called integral calculus, 
becoming differential calculus when reversing the question:
5 2s + ? 4s = 3 6s
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Counting roots linear and quadratic formulas

Linear Quadratic

T = 3B1 = 3*B + 1     
y = 3*x + 1

T = 3BB2B-1 = 3*B^2 + 2*B – 1      
y = 3*x^2  + 2*x – 1 

Wher does a quadratic formula turn?
T = x^2 + b*x + c
T = x^2 + 2*b/2*x + c
T = x^2 + 2*b/2*x + (b/2)^2 + c - (b/2)^2 
T = (x + b/2)^2 - D = -D for x = -b/2
T turns where x = -b/2

Examples
• T = x^2 - 6*x + 8 
T turns where x = 6/2 = 3
• T = -x^2 + 8*x + 5 = -(x^2 - 8*x - 5) 
T turns where x = +8/2 = +4
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Investing with budget-lines

I invest 100$ in apples at 2$/kg, and in pears at 4$/kg

• I buy x kg apples. It leaves 100 - 2*x $ to buy pears:

• I buy (100 - 2*x)/4 = 25 - 1/2*x kg pears

So, the linear budget-line cuts the axes in 25kg pears and 50kg apples.

pears

apples
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Market price, where supply & demand meet

Rising the unit-price p will rise supply and lower demand
Supply = 0.2*p, and Demand = 6 - 0.1*p
Met at : Supply = Demand units

• 0.2*p = 6 - 0.1*p
• 0.3*p = 6 = (6/0.3)*0.3
• p = 6/0.3
So, they meeet at the unit-price 20                                                                

This price is stable: 
Rising price will rise supply, and lower demand, which will lower price price

Lowering price will lower supply, and rise demand, which will rise price
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Saving money at home

Bo has 10$, and saves 3$/day. 

So after n days, T = 10 + 3*n

• How much after 7 days ? 

T = 10 + 3*7 = 31

• When 100$ ?
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100 = 10 + 3*n, but, 100 = (100 – 10) + 10, so

3*n = 100 – 10 = 90 but,    90 = (90/3)*3, so 

n = 90/3 = 30



Comparing savings

Al saves 5$/day. Starting 4 days earlier, Bo saves 3$/day. 

After n days:

• Al.  T = 5*n

• Bo. T = 3*n + 3*4 = 3*n + 12, 

The same: 
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3*n + 12 = 5*n but, 5*n = (5*n – 3*n) + 3*n = 2*n + 3*n, so 

2*n = 12 but, 12 = (12/2)*2, so 

n = 12/2 = 6



Saving money in a bank

200$ + 12% = ?        Oops, unlike units, so we exchange 200$ = 100%
100% + 12% = 112%, changed back to $:

T = 112% = (112/100)*100% = (112/100)*200$ = 1.12 * 200$

• So, to add 12% means to multiply with 112%, or 1.12. 

After n years, we have T = 200$*112%^n, or T = 200 * 1.12^n

• After 2 years: R = (1+ 12%)^2 = 1.12^2 = 1.254, 
so 12% 2 times = 24% + 1.4% extra interest (compound interest)

• Doubling, 1.12^n =2, is predicted by the factor-counting logarithm

n = log1.12(2) = 6.1

• Asking which percent gives a 10year doubling leads to the equation 

(1+x)^10 = 2 predicted by the factor-finding root  1+x = 
10

2 = 1.072, so x = 7.2%
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Instalment plan: 
a race between a debt and a saving
• I borrow 100$ at 7 % per year. So, as interest I pay 7% of 100$ = 7$. 

I pay back 7$ + 2$ = 9$ per year. 

This gives a saving S after n years:                                           +7%                             +7% 

S = R*9/7%, with 1+R = (1+7%)^n, or                             9$/7%                       S = 9$ + 7%

S/9 = R/7%                                                                        account 1                     account 2

• Balance when Debt = Saving:                         

100*1.07^n = (1.07^n – 1)*9/7%

Reducing to 1.07^n = 9/2 (the ‘speed-factor’)

Solved by n = 22.2 years
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Per-numbers add as areas (integral calculus)
“2kg at 3$/kg + 4kg at 5$/kg = 6kg at ? $/kg?”

2 kg   at   3 $/kg
+ 4 kg   at   5 $/kg

(2+4) kg   at   p $/kg
• Unit-numbers add directly.
• Per-numbers must be multiplied to 

unit-numbers, thus adding as areas
under the per-number curve. 

• Here, multiplication before addition
• So, per-numbers and fractions are not numbers, 

but operators needing numbers to be numbers.

$/kg

5
p

3                                 4x5 $
2x3 $

0                2                                 6    kg

Here, the per-number curve is piecewise constant
S (p*Dx) becomes ∫p*dx, if it is locally constant , interchanging epsilon and delta
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p = 
S ($/kg ∗ kg)

S kg



Per-numbers are found (differentiation)
“2kg at 3$/kg + 4kg at what = 6kg at 5$/kg?”

2 kg   at   3 $/kg
+ 4 kg   at   ? $/kg

6 kg   at   5 $/kg
Outside, we remove the initial 2x3 block and 

recount the rest in 4s. Geometrically, reversed 

per-number addition means subtracting areas 

to be reshaped, called differential calculus.

Inside, the recount-formula algebraically 
predicts the result. Here subtraction (giving a 
change, D) comes before division.

$/kg

?
5       

6 x 5 
3

2 x 3                  4 x ?

0                    2                                        6    kg

2x3 + 4x? = 6x5
? = (6x5 - 2x3)/(6-2) = D$/Dkg
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Four ways to unite and split a Total

A number-formula T = 345 = 3BB4B5 = 3*B^2 + 4*B + 5 (a polynomial) shows the 4 ways to unite: +, *, ^, next-
to block-addition (integration). Addition and multiplication unite changing and constant unit-numbers. 
Integration and power unite changing and constant per-numbers. We might call this beautiful simplicity the
‘Algebra Square’ since in Arabic, algebra means to reunite. ● The 4 uniting operations each has a reverse 
splitting operation: Addition has subtraction (–), and multiplication has division (/). Power has factor-finding 
(root, √) and factor-counting (logarithm, log). Integration has per-number finding (differentiation dT/dn = T‘). 
Reversing operations is solving equations, done by moving to opposite side with opposite sign. 

Operations unite / split into Changing Constant

Unit-numbers

m, s, $, kg
T = a + n
T – a = n

T = a * n
T/n = a

Per-numbers

m/s, $/kg, m/(100m) = %
T = ∫ a dn
dT/dn = a

T = a^n
logaT = n, n√T = a
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Consumer and product behavior:
Never trust totals & averages, always split ‘em

Totals Apples Pears Total By product Apples Pears Total% Total #

Girls 4 2 6 Girls 4/6 = 67% 33% 100% 6

Boys 1 3 4 Boys 25% 75% 100% 4

Total # 5 5 10

By buyer Apples Pears

Girls 4/5 = 80% 40%

Boys 20% 60%

Total % 100% 100%

Total # 5 5

Sale: 5 apples to 4 girls & 1 boy; 5 pears to 2 girls & 3 boys. Do girls & boys buy similar? 
Do apples & pears sell similar? We use 3 cross-tables: 1 with unit-, 2 with per-numbers.

Apples are sold to 4 times as many girls than boys.
Pears are sold to 50% more boys than girls.

Girls are 3 times more likely to buy apples than pears.
Boys are 3 times more likely to buy pears than apples.

Never go between per-numbers
Always go via the unit-numbers

30

In average, apples & pears sell like; and 60% go to girls.



Quadratics have constant change-of-change

x ^2 gives the numbers 0, 1, 4, 9, … 

The numbers change with +1, +3, +5, …  

The changes change with +2

• T may increase daily with a number that is constant 7, T = 5 + 7*x

• T may increase daily with a number that is constantly decreasing

as 7, 5, 3, ... Here the change-of-change is constant, -2

Checking, gives the formula T = - x^2 + 8*x + 5.
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x^2 + 6*x + 8 = 0 x^2 + b*x + c = 0

3           3*x 8

x x^2 3*x

x 3

b/2      b/2*x c

x x^2 b/2*x

x b/2

(x+3)^2 = x^2 + 6*x + 8 + 1
(x+3)^2 =             0 + 1

x+3 = ± 1
x = -3 ± 1    x = -4 & x = -2

(x+b/2)^2 = x^2 + b*x + c + [(b/2)^2 – c]
(x+b/2)^2 =             0 +         D

x+b/2 = ± 𝐷

x = -b/2 ± 𝐷, x = -b/2 ± (b/2)^2 – c

Outside geometry & inside algebra, should always go 
hand in hand. Quadratic equations solved with 2 cards
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Recounting sides in a box gives trigonometry

In Greek, geometry means to earth-measure. The earth may be divided in triangles; 

that may be divided in right triangles; that may be seen as a box cut by its diagonal

thus having three sides: the base b, the altitude a, and the cut c, connected with the 

angle A by per-number formulas recounting the sides pairwise.

a = (a/c) x c  = sinA x c

a = (a/b) x b = tanA x b

b = (b/c) x c  = cosA x c

tanA = a/b = Dy/Dx = gradient 

Circle: circum./diam. is p = n*tan(180/n) for n large

B

c                         a

A b                    C
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Conclusion

• Yes, core mathematics may be learned through its historic root, economics, 
describing how humans share what they produce

• Asking “How many did I produce?” roots counting, predicted by division 
iconizing a broom pushing away bundles, to be stacked by a multiplication-
lift, to be pulled away by a subtraction-rope to look for unbundled singles, to 
be added on-top or next-to, thus rooting decimal and negative numbers

• Recounting in a new unit creates a recount formula, used to solve equations, 
and to change units as in most STEM formulas

• Uniting stacks on-top or next-to roots proportionality or calculus

• So why make mathematics hard when it may also be easy & meaningful?
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