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Preface 

 

A curriculum for a class is like a score for an orchestra. Follow it, and the result will be a 

perfect performance. In music perhaps, but not always in a class.  

It begins so well. Textbooks follow curricula, and teachers follow the textbooks supposed to 

mediate perfect learning. But, as shown in international tests, this does not always take place for all 

learners. But then, other scores may be more successful? Well, with few variations, scores seem to 

teach the same in the same way: numbers, operations, calculations, formulas, and forms. Why is there 

so little room for improvisation as in jazz?  

So, with the transformation of modern society into a postmodern version, the time has come 

to ask: How about jazzing up the curricula to allow children’s quantitative competences and talents 

to blossom? 

As a curriculum architect using difference research to uncover hidden differences that may 

make a difference, I warmly greeted the announcement of ICMI study 24 with the title ‘School 

Mathematics Curriculum Reforms: Challenges, Changes and Opportunities’. I was especially excited 

about including opportunities, which would allow hidden differences to be noticed and perhaps tested. 

And I jumped for joy with the acceptance of my paper ‘A Twin Curriculum Since Contemporary 

Mathematics May Block the Road to its Educational Goal, Mastery of Many.’ 

At the conference I was asked to contribute writing a report on part B2 asking ‘How are 

mathematics content and pedagogical approaches in reforms determined for different groups of 

students (for e.g. in different curriculum levels or tracks) and by whom?’  

The deadline was end June 2019, but shortly before I was told that this part would be canceled 

and not appear in the report. Still, I finished my contribution and sent it in. But as expected, it has not 

been included. Consequently, I have chosen to publish it as an appendix to the ICMI 24 study. 

To me, the question is ‘Why can’t we have the same curriculum for all students?’, which of 

course leads on to the more general question ‘What is mathematics education?’ 

Asking the Three Grand Educational Theories 

A question we may redirect to the three grand educational theories, philosophy, sociology and 

psychology, by asking ‘What is existence and essence in mathematics?’, ‘What does the common 

institution education do to individuals?’, and ‘What is the relationship between inside representations 

and outside reality in mathematics?’ 

In philosophy, a core question is the relationship between ‘outside’ existence and ‘inside’ 

essence. To existentialists existence precedes essence as formulated by Sartre, or, as formulated by 

Heidegger: In a judging sentence, trust the subject, it exists, but doubt the predicate, it is a chosen 

construction. Wanting to protect the second Enlightenment French republic from hidden 

patronization, poststructuralism took this warning further with Derrida recommending predicates to 

be deconstructed, and with Foucault warning against ruling ‘truth regimes’ forcing constructed 

diagnoses upon humans to force them into cures at normalizing institutions. 

As to mathematics meaning knowledge, ancient Greece chose it as a common name for their 

four knowledge areas: astronomy, music, geometry and arithmetic describing the physical fact Many 

in time and space, in time, in space, and by itself. And together forming the ‘quadrivium’ 

recommended by Plato as a general curriculum together with ‘trivium’ consisting of grammar, logic 

and rhetoric. Today, mathematics typically is a common name for geometry and algebra both 

indicating the outside existence rooting them: in Greek, geometry means to measure earth, and in 

Arabic, algebra means to reunite. 

Although born as existence-based, mathematics never developed as a natural science about 

Many in time and space since both Greek and Roman numbers both missed the advantage of only 

bundling singles and bundles, as did the Hindu-Arabic numbers coming to Europe in the Renaissance.  
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Instead, the Greeks developed an axiomatic deductive Euclidean geometry well suited to 

practice logic. So, for centuries, mathematics was a science about essence, essence-based 

mathematics’. Which was even intensified when around 1900, the abstract concept ‘set’ was 

spreading all over mathematics allowing also algebra to be presented in an axiomatic deductive by 

defining its concepts from above as examples of abstractions instead of from below as abstractions 

from examples. It culminated with the New Math movement in the 1960s, defining a function as a 

subset of a set-product where first-component identity implies second-component identity instead of 

using the original Euler definition where a function was a common name for calculations with both 

known and unknown numbers. 

The English-speaking world soon went back to basics and to the set-free essence-based math 

curricula. The rest of the world developed new set-based curricula. 

What is needed are curricula in existence-based math returning to the original Greek meaning 

where mathematics is a natural science about Many in time and space. 

So, we need curricula that presents mathematics as an existentialist outside referring natural 

science aiming for mastery of Many instead as a pure self-referring science that is taught and learned 

for its own sake, and where outside applications are left to others to teach later. 

As to sociology looking at how humans cooperate to improve their lives, constructing 

common concepts and languages allows sharing information, and constructing common institutions 

as means to reach common goals allows additional time to reach individual goals also. Although 

seemingly increasing productivity, sociology still warns against potential institutional goal 

displacements where a means becomes the goal instead by realizing that not reaching the original 

goal is an effective way to secure survival and growth to the institution itself. And as to institutions 

treating humans, Foucault warns against education becoming instead a ‘pris-pital’ combining 

disciplinary power-techniques of a prison and a hospital by forcing the treated to return to the same 

room again and again, and by forcing a diagnose upon them as ignorant to be cured by self-referring 

treatments: ‘you know no mathematics, so we teach you mathematics’. To avoid self-reference, an 

institution must always have a well-formulated outside goal. 

So, in mathematics education, to avoid self-reference, mastery of Many is the outside goal 

that generated mathematics as a means to reach it. And essence-based mathematics and existence-

based mathematics should compete as to which is more effective in reaching this outside goal. So, 

curricula in the latter need to be designed and tested. And it may be that mastery of Many could 

become not only the goal but also a means to later also master essence-based mathematics if needed 

or wanted. 

Psychology looks at how the human mind constructs inside representations of outside things 

and actions. This actualizes the core questions of philosophy and sociology: Should the outside 

precede the inside, or vice versa? Should institutionalized representations precede individual, or vice 

versa? As to education, this has created two different schools: behaviorism using motivation to make 

teaching more effective, and constructivism focusing on learning through individual constructions. 

So, in mathematics education in the 1980s, Skinner behaviorism was replaced by two kinds 

of constructivism, a social version mediating institutionalized representations by a teacher that should 

be well educated, and having Vygotsky as its prime theorist, thus making learners choose between 

serving or rejecting the mediated truth regime. And a radical version allowing representations to be 

constructed and negotiated with peers by meeting the outside subject of the sentence with the teacher 

in the background supplying concrete material with guiding questions, and having Piaget as its prime 

theorist, thus allowing learners constructing knowledge as ground theory researchers. 

The Time has Come for a Curriculum in Existence-Based Mathematics  

 To make visible hidden opportunities I decided that my paper should focus on curricula based 

upon existence-based mathematics, thus siding philosophically with existentialism. Sociologically, I 

sided with the necessity of avoiding a goal displacement by formulating the goal of mathematics 

education as did the ancient Greeks to be mastery of Many. And psychologically, I sided with radical 
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constructivism by allowing knowledge to be constructed individually by meeting the outside subjects 

of mastery of Many, the total and the box, to be inside described by predicates in the form of numbers, 

calculations and formulas helped by guiding questions. 

Seeing 3-year-old children describe four fingers as ‘That is two twos’, shortened to ‘T = 2 2s’ 

indicates that, when adapting to Many before school, children use bundle-numbers with units inside, 

outside represented by a 2-by-2 box. This resonates with the fact that the sentences T = 2 is 

meaningless without a unit. So, an existence-based math curriculum must use two-dimensional 

bundle-numbers instead of the traditional one-dimensional line-numbers describing cardinality 

without units. 

To transform an outside unstructured total into a box and a bundle-number, we must specify 

the unit by asking, e.g., ‘How many bundles of 2s in a total of 9?’ To get an answer, first we push 

away bundles. Iconizing the broom by a division sign allows a calculator predict the result by showing 

‘9/2 = 4.some’. Next, we stack the bundle into a box. Iconizing the lift by a multiplication sign allows 

a calculator predict the result by showing ‘4x2 = 8’ or ‘4*2 = 8.’ Then we pull away the box to look 

for unbundled singles. Iconizing the rope by a subtraction sign allows a calculator predict the result 

by showing ‘9 – 4*2 = 1.’ 

Placing the unbundled on-top of the stack, it may be reported by a decimal number, or a 

fraction if counted in the bundles, or a negative number showing what is needed for yet another bundle 

thus creating a ‘flexible bundle-number’:  

T = 9 = 4Bundle1 2s = 4B1 2s = 4.1 2s = 4 ½ 2s = 5.-1 2s = 3B3 2s = 2B5 2s. 

Recounting ten fingers in 3s allows meeting also the bundles of bundles: 

T = ten = 3B1 3s = 1 BB0B1 3s = 1BB1B-2 3s. 

Flexible bundle-numbers ease calculations:  

3 * 45 = 3 * 4B5 = 12B15 = 13B5 = 135, and 135 /3 = 13B5 /3 = 12B15 /3 = 4B5 = 45 

Once counted, totals may be recounted in another unit using the recount-formula coming from 

recounting 8 in 2s as 8 = (8/2)*2, or T = (T/B)*B with unspecified numbers, a direct way to the first 

of the two columns of mathematics, proportionality or linearity. And to equations where u*2 = 8 is 

solved by recounting 8 in 2 as 8 = (8/2)*2, so u = 8/2. 

Thus, a total with icon-units as, e.g., 2 3s, may be recounted in tens, and vice versa. And it 

may be squeezed into a square with the square root as the unit, allowing quadratic equations to be 

easily solved by turning a playing card a quarter round before being placed on-top of another card. 

And double-counting a physical quantity as apples leads to per-numbers as p = 2$/5kg 

allowing changing units by recounting in the per-number, 15 kg = (15/5)*5kg = (15/5)*2$ = 6$. 

With like units, per-numbers become fractions: p = 25$/100$ = 25/100 = 25%. 

So, per-numbers and fractions are not numbers, but operators needing numbers to become 

numbers. 

Finally, halved by its diagonal, a box splits into two right triangles. Here recounting the sides 

mutually creates the trigonometry formulas, height = (height/base) * base = tan A * base, etc. As well 

as a formula for pi, pi = n * tan(180/n) for n big. 

And again, once counted, totals as 2 3s and 4 5s may add on-top after recounting makes the 

units like; or next-to by their areas, a direct way to the second of the two columns of mathematics, 

integral calculus, as well as to differential calculus when reversed. 

And also occurring when adding piecewise constant per-numbers as 2kg at 3$/kg + 4kg at 

5$/kg. Here the unit-numbers add directly while the per-numbers must be multiplied to areas before 

adding. This again exemplifies integral calculus, which also appears when adding locally constant 

per-numbers by the area under the per-number graph. 

And also occurring when writing out fully a number as we say it, e.g., T = 345 = 3*BB + 4*B 

+ 5*1, showing the four ways to unite into a total: on-top addition, multiplication, power and next-to 

box addition, also called integral calculus. Including also the reverse operation splitting a total: 

subtraction, division, root and logarithm, and differentiation, allows setting up the ‘algebra square’: 
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Operations unite/ 

split Totals in 
Changing Constant 

Unit-numbers 

m, s, kg, $ 

T = a + n 

T – n = a 

T = a*n 
𝑇

𝑛
 = a 

Per-numbers 

m/s, $/kg, $/100$ = % 

T =  f dx 
𝑑𝑇

𝑑𝑥
 = f 

T = 𝑎𝑏 

√𝑇
𝑏

= a         loga(T) = b 

Figure 01. The ‘algebra-square’ shows the four ways to unite or split numbers. 

Furthermore, the bundle-counting polynomial formula, T = a*x^2 + b*x + c, also shows the 

different forms of constant change: proportionality, T = b*x; linearity, T = b*x + c; exponential, T = 

a*k^x; power, T = a*x^k; and accelerated change, T = a*x^2 + b*x + c 

Consequently, in an existence-based mathematics curriculum, the two basic columns of 

mathematics, linearity and calculus, occur at once in grade 1. So, of course it is possible to have one 

curriculum for all student. All you have to do is replace essence-based mathematics with existence-

based mathematics. All we need is a curriculum for the latter.  

So that is what my paper should be about.  

 

Aarhus, Denmark, July 2021, Allan Tarp 
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The Same Mathematics Curriculum for All Students  

To offer mathematics to all students, parallel tracks often occur from the middle of secondary school. 

The main track continues with a full curriculum, while parallel tracks might use a reduced curriculum 

leaving out, e.g., calculus; or they might contain a different kind of mathematics meant to be more 

relevant to students by including more applications. However, an opportunity here presents itself for 

designing the same curriculum for all students no matter which track they may choose. As number-

language, why not let mathematics follow the communicative turn that took place in language 

education in the 1970s by prioritizing its connection to the outside world higher than its inside 

connection to its grammar? We will consider examples of all three curricula options. 

A Need for Curricula for all Students 

Being highly useful to the outside world, mathematics is a core part of institutionalized 

education. Consequently, research in mathematics education has grown as witnessed by the 

International Congress on Mathematics Education taking place each 4 year since 1969. Likewise, 

funding has increased as seen, e.g., by the creation of a National Center for Mathematics Education 

in Sweden. However, despite increased research and funding, the former model country Sweden has 

seen its PISA result decrease from 2003 to 2012, causing the Organisation for Economic Co-operation 

and Development (OECD, 2015) to write the report ‘Improving Schools in Sweden’ describing its 

school system as ‘in need of urgent change’: 

PISA 2012, however, showed a stark decline in the performance of 15-year-old students in all 

three core subjects (reading, mathematics and science) during the last decade, with more than one out 

of four students not even achieving the baseline Level 2 in mathematics at which students begin to 

demonstrate competencies to actively participate in life. (p. 3) 

Other countries also experience declining PISA results; and in high performing countries not 

all students are doing well. 

Addressing the Need  

By saying ‘All students should study mathematics in each of the four years that they are 

enrolled in high school.’ the US National Council of Teachers of Mathematics (2000, p. 18) has 
addressed the need for curricula for all students in their publication ‘Principles and Standards for 

School Mathematics’. In the overview the Council writes  

We live in a mathematical world. Whenever we decide on a purchase, choose an insurance or 

health plan, or use a spreadsheet, we rely on mathematical understanding (..) In such a world, those 

who understand and can do mathematics will have opportunities that others do not. Mathematical 

competence opens doors to productive futures. A lack of mathematical competence closes those 

doors. (..) everyone needs to be able to use mathematics in his or her personal life, in the workplace 

and in further study. All students deserve an opportunity to understand the power and beauty of 

mathematics. Students need to learn a new set of mathematics basics that enable them to compute 

fluently and to solve problems creatively and resourcefully. (p. 1) 

In this way the Council points out that it is important to master ‘mathematical competence’, 

i.e., to understand and do mathematics to solve problems creatively and to compute fluently. This 

will benefit the personal life, the workplace, as well as further study leading to productive futures.  

Consequently, the Council has included in the publication a curriculum that ‘is mathematically 

rich providing students with opportunities to learn important mathematical concepts and procedures 

with understanding’. This in order to ‘provide our students with the best mathematics education 

possible, one that enables them to fulfil personal ambitions and career goals.’ 

The publication includes a set of standards: ‘The Standards for school mathematics describe 

the mathematical understanding, knowledge, and skills that students should acquire from 

prekindergarten to grade 12.’ The five standards present goals in the mathematical content areas of 
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number and operations, algebra, geometry, measurement and data analysis and probability. (..) 

Together, the standards describe the basic skills and understandings that students will need to function 

effectively in the twenty-first century’ (p. 2) 

In the chapter ‘Number and operations’, the Council writes 

Number pervades all areas of mathematics. The other four content standards as well as all five process 

standards are grounded in number. Central to the number and operation standard is the development 

of number sense. Students with number sense naturally decompose numbers (..) For example, children 

in the lower elementary grades can learn that numbers can be decomposed and thought about in many 

different ways - that 24 is 2 tens and 4 ones and also two sets of 12. (p. 7) 

In the chapter ‘The Curriculum Principle’, the Council writes 

A curriculum is more than a collection of activities: it must be coherent, focused on important 

mathematics, and well articulated across the grades (..) for teachers at each level to know what 

mathematics their students have already studied and will study in future grades. (p. 3, 4) 

All in all, the Council points to the necessity of designing a curriculum that is relevant in 

students’ ‘personal life, in the workplace and in further study’ and that is coherent at the same time 

to allow teachers to know ‘what mathematics their students have already studied and will study in 

future grades’. 

Coherence and Relevance  

So, in their publication, the National Council of Teachers of Mathematics stresses the 

importance of coherence and relevance. To allow teachers follow a prescribed curriculum effectively, 

and to allow students build upon what they already know, it must be ‘well articulated across the 

grades’. And, to have importance for students a curriculum must be relevant by supplying them with 

‘the basic skills and understandings that students will need to function effectively in the twenty-first 

century’. 

With ‘cohere’ as a verb and ‘relevant’ as a predicate we can ask: ‘to what does this curriculum 

cohere, and to what is it relevant?’ As to the meaning of the words ‘cohere’ and ‘relevant’ we may 

ask dictionaries. 

The Oxford Dictionaries (en.oxforddictionaries.com) writes that ‘to cohere’ means ‘to form a 

unified whole’ with its origin coming from Latin ‘cohaerere’, from co- ‘together’ + haerere ‘to stick’; 

and that ‘relevant’ means being ‘closely connected or appropriate to what is being done or 

considered.’ 

We see, that where ‘cohere’ relates to states, ‘relevant’ relates to changes or processes taking 

place. 

The Merriam-Webster dictionary (merriam-webster.com) seems to agree upon these 

meanings. It writes that ‘to cohere’ means ‘to hold together firmly as parts of the same mass’. As to 

synonyms for cohere, it lists: ‘accord, agree, answer, check, chord, coincide, comport, conform, 

consist, correspond, dovetail, fit, go, harmonize, jibe, rhyme (also rime), sort, square, tally.’ And as 

to antonyms, it lists: ‘differ (from), disagree (with).’ 

In the same dictionary, the word ‘relevant’ means ‘having significant and demonstrable 

bearing on the matter at hand’. As to synonyms for relevant, it lists: ‘applicable, apposite, apropos, 

germane, material, pertinent, pointed, relative.’ And as to antonyms, it lists: ‘extraneous, immaterial, 

impertinent, inapplicable, inapposite, irrelative, irrelevant, pointless.’ 

If we accept the verb ‘apply’ as having a meaning close to the predicate ‘relevant’, we can 

rephrase the above analysis question using verbs only: ‘to what does this curriculum cohere and 

apply?’ 

Metaphorically, we may see education as increasing skills and knowledge by bridging 

individual start levels to a common end level described by institutional goals. So, we may now give 

a first definition of an ideal curriculum: ‘To apply to a learning process as relevant, a curriculum 
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coheres to the individual start levels and to the end goal, which again coheres with the need expressed 

by the society funding the educational institution.’ 

This definition involves obvious choices, and surprising choices also if actualizing the ancient 

Greek sophist warning against choice masked as nature. The five main curriculum choices are:  

How to make the bridge cohere with the individual start levels in a class?  

How to make the end level cohere to goals expressed by the society?  

How to make the end level cohere to goals expressed by the learners?  

How to make the bridge cohere to previous and following bridges? 

How to make the bridge (more) passable?  

Then specific choices for mathematics education follow these general choices. 

Parallel Tracks to the Main Curriculum, Examples 

In their publication chapter Grades 9 through 12, the National Council of Teachers of 

Mathematics discusses to the possibility to introduce parallel courses in the high school. 

In secondary school, all students should learn an ambitious common foundation of 

mathematical ideas and applications. This shared mathematical understanding is as important for 

students who will enter the workplace as it is for those who will pursue further study in mathematics 

and science. All students should study mathematics in each of the four years that they are enrolled in 

high school. 

Because students’ interests and inspirations may change during and after high school, their 

mathematics education should guarantee access to a broad spectrum of careers and educational 

options. They should experience the interplay of algebra, geometry, statistics, probability and discrete 

mathematics. 

High school mathematics builds on the skills and understandings developed in the lower grades. (..) 

High school students can study mathematics that extends beyond the material expected of all students 

in at least three ways. One is to include in the curriculum material that extends the foundational 

material in depth or sophistication. Two other approaches make use of supplementary courses. In the 

first students enroll in additional courses concurrent with those expected of all students. In the second, 

students complete a three-year version of the shared material and take other mathematics courses. In 

both situations, students can choose from such courses as computer science, technical mathematics, 

statistics, and calculus. Each of these approaches has the essential property that all students learn the 

same foundation of mathematics but some, if they wish, can study additional mathematics. (p. 18-19) 

The Council thus emphasizes the importance of studying ‘mathematics in each of the four 

years that they are enrolled in high school’. This the council sees as feasible if implementing one or 

more of three options allowing students to ‘study mathematics that extends beyond the material 

expected of all students’. Some students may want to study ‘material that extends the foundational 

material in depth or sophistication’. Others may want to take additional courses cohering to the 

college level, especially calculus. Others may want to take additional courses relevant to their daily 

life or a workplace. We will now look at two examples of that both including examples of finite 

mathematics, a subject that is normally outside a standard high school curriculum. 

For all Practical Purposes, Introduction to Contemporary Mathematics 

In the US, the Consortium for Mathematics and its Applications (COMAP) has worked out a 

material called ‘ For all practical purposes’ (COMAP, 1988). In its preface, the material presents itself 

as  

(..) an introductory mathematics course for students in the liberal arts or other nontechnical curricula. 

The course consists of twenty-six half-hour television shows, the textbook, and this Telecourse guide. 

This series shows mathematics at work in today’s world. (..) For all practical purposes aims to develop 

conceptual understanding of the tools and language of mathematics and the ability to reason using 

them. We expect most students will have completed elementary algebra and some geometry in high 

school. We do not assume students will be pursuing additional courses in mathematics, at least none 

beyond the introductory level. (p. iii) 
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As to content, the material has five parts (p. v - vi) 

Part one focuses on graph theory and linear programming illustrated with network as 

scheduling and planning. It includes an overview show and four additional shows called street smarts: 

street networks; trains, planes and critical paths; juggling machines: scheduling problems; juicy 

problems: linear programming. 

Part two deals with statistics and probability illustrated with collecting and deducing from 

data. It includes an overview show and four additional shows called behind the headlines: collecting 

data; picture this: organizing data; place your bets: probability; confident conclusions: statistical 

inference. 

Part three focuses on social choice, fair division and game theory illustrated by different 

voting systems and conflict handling. It includes an overview show and four additional shows called 

the impossible dream: election theory; more equal than others: weighted voting; zero-sum games: 

games of conflict; prisoner’s dilemma: games of partial conflict. 

Part four focuses on using geometry, the classical conic sections, shapes for tiling a surface, 

geometric growth in finance in and in population, and measurement. It includes an overview show 

and four additional shows called how big is too big: scale and form; it grows and grows: populations; 

stand up conic: conic sections; it started in Greece: measurement. 

Part five focuses on computer algorithms. It includes an overview show and four additional 

shows called rules of the games: algorithms; counting by two’s: numerical representation; creating a 

cde: encoding information; moving picture show: computer graphics. 

The video sections are available on YouTube. 

A Portuguese Parallel High School Curriculum 

Portugal followed up on the COMAP initiative. In his paper called ‘Secondary mathematics 

for the social sciences’ (Silva, 2018), Jaime Silva describes how the initiative inspired an innovative 

two-year curriculum for the Portuguese upper secondary school.  

As to the background, Silva writes 

There are two recurring debates about the mathematics curriculum in secondary schools, especially in 

countries like Portugal where compulsory education goes till the 12th grade. First, should all students 

study mathematics (not necessarily the same) or should the curriculum leave a part of the students 

“happy” without the mathematics “torture”? Second, should all students study the same “classic” 

mathematics, around ideas from differential and integral calculus with some Geometry and some 

Statistics? 

When the 2001 revision (in great part in application today) of the Portuguese Secondary School 

curriculum was made (involving the 10th, 11th and 12th grades) different kinds of courses were 

introduced for the different tracks (but not for all of them) that traditionally existed. Mathematics A is 

for the Science and Technology track and for the Economics track and is a compulsory course. 

Mathematics B is for the Arts track and is an optional course. Mathematics Applied to the Social 

Sciences (MACS) is for the Social Sciences track and is an optional course. The Languages track was 

left without mathematics or science. Later the last two tracks were merged and the MACS course 

remained optional for the new merged track. The technological or professional tracks could have 

Mathematics B, Mathematics for the Arts or Modules of Mathematics (3 to 10 to be chosen from 16 

different modules, depending on the professions). (p. 309) 

As to the result of debating a reform in Portugal, Silva writes 

When, in 2001, there was a possibility to introduce a new Mathematics course for the “Social 

Sciences” track, for the 10th and 11th grade students, there were some discussions of what could be 

offered. The model chosen was inspired in the course “For All Practical Purposes” (COMAP, 2000) 

developed by COMAP because it “uses both contemporary and classic examples to help students 

appreciate the use of math in their everyday lives”. As a consequence, a set of independent chapters, 

each one with some specific purpose, was chosen for this syllabus, that included 2 years of study, with 

4.5 hours of classes per week (normally 3 classes of 90 minutes each). The topics chosen were: 10th 

grade Decision Methods: Election Methods, Apportionment, Fair Division; Mathematical Models: 
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Financial models, Population models Statistics (regression); 11th grade Graph models, Probability 

models, Statistics (inference). (p. 310) 

As to the goal of the curriculum, Silva writes  

The stated goal of this course is for the students to have “significant mathematical experiences that 

allow them to appreciate adequately the importance of the mathematical approaches in their future 

activities”. This means that the main goal is not to master specific mathematical concepts, but it is 

really to give students a new perspective on the real world with mathematics, and to change the 

students view of the importance that mathematical tools will have in their future life. In this course it 

is expected that the students study simple real situations in a form as complete as possible, and 

“develop the skills to formulate and solve mathematically problems and develop the skill to 

communicate mathematical ideas (students should be able to write and read texts with mathematical 

content describing concrete situations)”. (p. 310) 

As to the reception of the curriculum, Silva writes  

This was a huge challenge for the Portuguese educational system because most of these topics had 

never been covered before, and most teachers did not even study Graph Theory at University. Election 

Methods, Apportionment and Fair Division were of course completely new to everybody. The 

reception was good from the part of the Portuguese Math Teacher Association APM, as it considered 

that “the methodologies and activities suggested in the MACS program promote the development of 

the skills of social intervention, of citizenship and others”. The reception from the scientific society 

SPM was rather negative because they considered the syllabus did not have enough mathematical 

content. (p. 310-311) 

As to the present state of the curriculum, Silva writes 

After 15 years there is no thorough evaluation of how the course is run in practice in the schools, or 

which is the real impact on the further education or activities of the students that studied “Mathematics 

Applied to the Social Sciences”. In Portugal there is no institution in charge of this type of work and 

evaluations are done on a case by case basis. All Secondary Schools need to do selfevaluations but 

normally just compare internal statistics to national ones to see where they are in the national scene. 

In the reports consulted there was no special mention to the MACS course and so we have the 

impression that the MACS course entered the normal Portuguese routine in Secondary School. (p. 

315) 

So as to a parallel track to the traditional curriculum, the National Council of Teachers of 

Mathematics suggests that including a different kind of mathematics might be an option, e.g., finite 

mathematics. In the US this idea was taken up by the Consortium for Mathematics and its 

Applications (COMAP) working out a material including a textbook and a series of television shows 

to show ‘mathematics at work in today’s world’. Part of this material was also included in a parallel 

curriculum in Portugal called ‘Mathematics Applied to the Social Sciences’ (MACS) offering to 

Portuguese students also to study mathematics in each of their high school years, as the National 

Council of Teachers of Mathematics recommends. 

Precalculus, Typically the last Mandatory Curriculum 

This chapter looks at the part of a mathematics curriculum called precalculus, typically being 

the first part that is described in a parallel curriculum since it contains operations as root and logarithm 

that is not considered part of a basic mathematics algebra curriculum. First, we look at an example of 

a traditional precalculus curriculum. The we ask what could be an ideal precalculus curriculum, and 

illustrates it with two examples. In the next chapter, we look at a special case, a Danish precalculus 

curriculum that has served both as a parallel and a serial curriculum during the last 50 years.  

A Traditional Precalculus Course 

An example of a traditional precalculus course is found in the Research and Education 

Association book precalculus (Woodward, 2010). The book has ten chapters. Chapter one is on sets, 

numbers, operations and properties. Chapter two is on coordinate geometry. Chapter three is on 
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fundamental algebraic topics as polynomials, factoring and rational expressions and radicals. Chapter 

four is on solving equations and inequalities. Chapter five is on functions. Chapter six is on geometry. 

Chapter 7 is on exponents and logarithms. Chapter eight is on conic sections. Chapter nine is on 

matrices and determinants. Chapter ten is on miscellaneous subjects as combinatorics, binomial 

distribution, sequences and series and mathematical induction. 

Containing hardly any applications or modeling, this book is an ideal survey book in pure 

mathematics at the level before calculus. Thus, internally it coheres with the levels before and after, 

but by lacking external coherence it has only little relevance for students not wanting to continue at 

the calculus level. 

An Ideal Precalculus Curriculum 

In their publication, the National Council of Teachers of Mathematics writes ‘High school 

mathematics builds on the skills and understandings developed in the lower grades. (p. 19)’  

But why that, since in that case high school students will suffer from whatever lack of skills 

and understandings they have from the lower grades?  

Mathe-matics, Meta-math, and Mathe-matism 

Furthermore, what kind of mathematics has been taught? Was it ‘grounded mathematics’ 

abstracted bottom-up from its outside roots, or ‘ungrounded mathematics’ or ‘meta-math’ 

exemplified top-down from inside abstractions, maybe becoming ‘meta-matism’ if mixed with 

‘mathe-matism’ (Tarp, 2018) true inside but seldom outside classrooms as when adding without 

units? 

As to the concept ‘function’, Euler saw it as a bottom-up abstracted name for ‘standby 

calculations’ containing specified and unspecified numbers. Later meta-math defined a function top-

down as an example of a subset in a set-product where first-component identity implies second-

component identity. However, as in the word-language, a function may be seen as a number-language 

sentence containing a subject, a verb and a predicate allowing its value to be predicted by a calculation 

(Tarp, 2018).  

As to fractions, meta-math defines them as quotient sets in a set-product created by the 

equivalence relation that (a,b) ~ (c,d) if cross multiplication holds, a*d = b*c. And they become 

mathe-matism when added without units so that 1/2 + 2/3 = 7/6 despite 1 red of 2 apples and 2 reds 

of 3 apples gives 3 reds of 5 apples and cannot give 7 reds of 6 apples. In short, outside the classroom, 

fractions are not numbers, but operators needing numbers to become numbers. 

As to solving equations, meta-math sees it as an example of a group concepts applying the 

associative and commutative law as well as the neutral element and inverse elements thus using five 

steps to solve the equation 2*u = 6, given that 1 is the neutral element under multiplication, and that 

½ is the inverse element to 2. 

2*u = 6, so (2*u)*½ = 6*½, so (u*2)*½ = 3, so u*(2*½) = 3, so u*1 = 3, so u = 3. 

However the equation 2*u = 6 can also be seen as recounting 6 in 2s using the recount-formula 

‘T = (T/B)*B’ present all over mathematics as the proportionality formula thus solved in one step:  

2*u = 6 = (6/2)*2, giving u = 6/2 = 3. 

Thus, a lack of skills and understanding may be caused by being taught inside-inside meta-

matism instead of grounded outside-inside mathematics. 

Using Sociological Imagination to Create a Paradigm Shift 

As a social institution, mathematics education might be inspired by sociological imagination, 

seen by Mills (1959) and Bauman (1990) as the core of sociology. Thus, it might lead to shift in 

paradigm (Kuhn, 1962) if, as number-language, mathematics would follow the communicative turn 

that took place in language education in the 1970s (Halliday, 1973; Widdowson, 1978) by prioritizing 

its connection to the outside world higher than its inside connection to its grammar 

So why not try designing a fresh-start precalculus curriculum that begins from scratch to allow 

students gain a new and fresh understanding of basic mathematics, and of the real power and beauty 

of mathematics, its ability as a number-language for modeling to provide an inside prediction about 
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an outside situation? Therefore, let us try to design a precalculus curriculum through, and not before 

its outside use. 

Restarting from Scratch with Grounded Outside-Inside Mathematics  

Let students see how outside degrees of Many are iconized by inside digits with as many 

strokes as it represents, five strokes in the 5-icon etc. Let students see that after nine we count by 

bundling creating icons for the counting operations as well, where division iconizes a broom pushing 

away the bundles, where multiplication iconizes a lift stacking the bundles into a block and where 

subtraction iconizes a rope pulling away the block to look for unbundles ones, and where addition 

iconizes placing blocks next-to or on-top of each other.  

Let students see that an outside block of 2 3s becomes an inside calculation 2*3 and vice 

versa. Let students see the commutative law by turning and a*b block, and see the distributive law by 

splitting a into c and d, and see the associative law by turning an a*b*c box. 

Let students see that both the word- and the number-language use full sentences with a subject, 

a verb, and an object or predicate, abbreviating ‘the total is 2 3s’ to ‘T = 2*3’ 

Let students enjoy flexible bundle-numbers where decimals and fractions negative and 

numbers are created to describe the unbundle ones placed next-to or on-top of the block, thus allowing 

5 to be recounted in 3s as T = 5 = 1B2 = 1.2 B = 1 2/3 B = 2B-1. 

Let student see, that recounting in other units may be predicted by the recount-formula ‘T = 

(T/B)*B’ saying ‘From the total T, T/B times, B may be pushed away’. Let students see that where 

the recount-formula in primary school recounts 6 in 2s as 6 = (6/2)*2 = 3*2, in secondary school the 

same task is formulated as solving the equation u*2 = 6 as u*2 = 6 = (6/2)*2 giving u = 6/2, thus 

moving 2 to the opposite side with the opposite calculation sign. 

Let students see the power of ‘flexible bundle-numbers’ when the inside multiplication 7*8 = 

(B-3)*(B-2) = BB-2B-3B+6 = 5B6 = 56 may be illustrated on an outside ten by ten block, thus 

showing that of course minus times minus must give plus since the 2*3 corner has been subtracted 

twice.  

Let students see that double-counting in two units create per-numbers as 2$ per 3kg, or 2$/3kg. 

To bridge the units, we simply recount in the per-number: Asking ‘6$ = ?kg’ we recount 6 in 2s: T = 

6$ = (6/2)*2$ = (6/2)*3kg = 9kg; and asking ‘9kg = ?$’ we recount 9 in 3s: T = 9kg = (9/3)*3kg = 

(9/3)*2$ = 6$.  

And, that double-counting in the same unit creates fractions and percent as 4$/5$ = 4/5, or 

40$/100$ = 40/100 = 4%. Thus finding 40% of 20$ means finding 40$ per 100$ so we re-count 20 in 

100s: T = 20$ = (20/100)*100$ giving (20/100)*40$ = 8$. Taking 3$ per 4$ in percent, we recount 

100 in 4s, that many times we get 3$: T = 100$ = (100/4)*4$ giving (100/4)*3$ = 75$ per 100$, so 

3/4 = 75%.  

And, that double-counting sides in a block halved by its diagonal creates trigonometry: a = 

(a/c)*c = sinA * c; b = (b/c)*c = cosA * c; a = (a/b)*b = tanA * b. With a circle filled from the inside 

by right triangles, this also allows phi to be found from a formula: circumference/diameter =  ≈ 

n*tan(180/n) for n large. 

And, how recounting and double-counting physical units create per-numbers and 

proportionality all over STEM, Science, Technology, Engineering and mathematics: kilogram = 

(kilogram/cubic-meter) * cubic-meter = density * cubic-meter; meter = (meter/second) * second = 

velocity * second; force = (force/square-meter) * square-meter = pressure * square-meter. 

Also, let students see how a letter like x is used as a placeholder for an unspecified number; 

and how a letter like f is used as a placeholder for an unspecified calculation formula. Writing ‘y = 

f(x)’ means that the y-number can be found by specifying the x-number in the f-formula. Thus, 

specifying f(x) = 2 + x will give y = 2+3 = 5 if x = 3, and y = 2+4 = 6 if x = 4. 

Algebra and Geometry, Always Together, Never Apart 

Let students enjoy the power and beauty of integrating algebra and geometry. 

First, let students enjoy seeing that multiplication creates blocks with areas where 3*7 is 3 7s 

that may be algebraically recounted in tens as 2.1 tens. Or, that may be geometrically transformed to 
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a square u^2 giving the algebraic equation u^2 = 21, creating root as the reverse calculation to power, 

u = √21. Which may be found approximately by locating the nearest number p below u, here p = 4, 

so that u^2 = (4+t)^2 = 4^2 + 2*4*t + t^2 = 21. 

Neglecting t^2 since t is less than 1, we get 4^2 + 2*4*t = 21, which gives t = 
21 – 4^2

4∗2
, or t = 

N – p^2

𝑝∗2
, if p is the nearest number below u, where u^2 = N. 

As an approximation, we then get √N ≈ p + t = p + 
N – p^2

𝑝∗2
 ; or √N ≈ 

N+ p^2

𝑝∗2
, if p^2 < N < 

(p+1)^2 

Then let students enjoy the power and beauty of predicting where a line geometrically 

intersects lines or circles or parabolas by algebraically solving two equations with two unknowns, 

also predicted by a computer software. 

A Number Seen as a Multiple Numbering 

Let students see the number 456 as what it really is, not three ordered digits obeying a place-

value system, but three numberings of bundles-of-bundles, bundles, and unbundled ones as expressed 

in the number-formula, formally called a polynomial: T = 456 = 4*B^2 + 5*B + 6*1, with B = ten. 

Let students see that a number-formula contains the four different ways to unite, called algebra 

in Arabic: addition, multiplication, repeated multiplication or power, and block-addition or 

integration. Which is precisely the core of traditional mathematics education, teaching addition and 

multiplication together with their reverse operations subtraction and division in primary school; and 

power and integration together with their reverse operations factor-finding (root), factor-counting 

(logarithm) and per-number-finding (differentiation) in secondary school.  

Including the units, students see there can be only four ways to unite numbers: addition and 

multiplication unite changing and constant unit-numbers, and integration and power unite changing 

and constant per-numbers. We might call this beautiful simplicity ‘the algebra square’. 

Operations unite/ 

split Totals in 
Changing Constant 

Unit-numbers 

m, s, kg, $ 

T = a + n 

T – n = a 

T = a*n 
𝑇

𝑛
 = a 

Per-numbers 

m/s, $/kg, $/100$ = % 

T =  f dx 
𝑑𝑇

𝑑𝑥
 = f 

T = 𝑎𝑏 

√𝑇
𝑏

= a         loga(T) = b 

Figure 01. The ‘algebra-square’ shows the four ways to unite or split numbers. 

Let students see calculations as predictions, where 2+3 predicts what happens when counting 

on 3 times from 2; where 2*5 predicts what happens when adding 2$ 5 times; where 1.02^5 predicts 

what happens when adding 2% 5 times; and where adding the areas 2*3 + 4*5 predicts how to add 

the per-numbers when asking ‘2kg at 3$/kg + 4kg at 5$/kg gives 6kg at how many $/kg?’ 

Solving Equations by Reversed Calculation Moving Numbers to Opposite Side 

Let students see that 

• the subtraction ‘5-3’ as the unknown number u that added with 3 gives 5, u+3 = 5, thus 

seeing an equation solved when the unknown is isolated by moving numbers ‘to opposite 

sign with opposite calculation sign’; a rule that applies also to the other reversed operations:  

• the division u = 5/3 is the number u that multiplied with 3 gives 5, u*3 = 5 

• the root u = 3√5 is the factor u that applied 3 times gives 5, u^3 = 5, making root a ‘factor-

finder’ 

• the logarithm u = log3(5) is the number u of 3-factors that gives 5, 3^u = 5, making 

logarithm a ‘factor-counter’. 

Let students see multiple calculations reduce to single calculations by unhiding ‘hidden 

bracket’ where 2+3*4 = 2+(3*4) since with units, 2+3*4 = 2*1+3*4 = 2 1s + 3 4s. This will prevent 

solving the equation 2+3*u = 14 as 5*u = 14 with u = 14/5, by allowing the hidden bracket to be 



9 

shown: 2+3*u = 14, so 2+(3*u) = 14, so 3*u = 14-2, so u = (14-2)/3, so u = 4 to be verified by testing: 

2+3*u = 2+(3*u) = 2+(3*4) = 2+12 = 14. 

Let students enjoy singing a ‘Hymn to Equations’: ‘Equations are the best we know, they’re 

solved by isolation. But first the bracket must be placed, around multiplication. We change the sign 

and take away, and only u itself will stay. We just keep on moving, we never give up; so feed us 

equations, we don’t want to stop!’ 

Let students build confidence in rephrasing sentences, also called transposing formulas or 

solving letter equations as, e.g., T = a+b*c, T = a-b*c, T = a+b/c, T = a-b/c, T = (a+b)/c, T = (a-b)/c, 

etc.; as well as formulas as, e.g., T = a*b^c, T = a/b^c, T = a+b^c, T = (a-b)^c, T = (a*b)^c, T = 

(a/b)^c, etc. 

Let student place two playing cards on-top with one turned a quarter round to observe the 

creation of two squares and two blocks with the areas u^2, b^2/4, and b/2*u twice if the cards have 

the lengths u and u+b/2. Which means that (u + b/2)^2 = u^2 + b*u + b^2/4. So, with a quadratic 

equation saying u^2 + b*u + c = 0, the first two terms disappear by adding and subtracting c: 

(u + b/2)^2 = u^2 + b*u + b^2/4 = (u^2 + b*u + c) + b^2/4 – c = 0 + b^2/4 – c = b^2/4 – c. 

Now, moving to opposite side with opposite calculation sign, we get the solution 

(u + b/2)^2 = b^2/4 – c 

u + b/2 = ±√b^2/4 –  c 

u = -b/2 ±√b^2/4 –  c 

The Change Formulas 

Finally, let students enjoy the power and beauty of the number-formula, containing also the 

formulas for constant change: T = b*x (proportional), T = b*x + c (linear), T = a*x^n (elastic), T = 

a*n^x (exponential), T = a*x^2 + b*x + c (accelerated). 

If not constant, numbers change: constant change roots precalculus, predictable change roots 

calculus, and unpredictable change roots statistics using confidence intervals to ‘post-dict’ what we 

cannot ‘pre-dict’. 

Combining linear and exponential change by n times depositing a$ to an interest rate r%, we 

get a saving A$ predicted by a simple formula, A/a = R/r, where the total interest rate R is predicted 

by the formula 1+R = (1+r)^n. Such a saving may be used to neutralize a debt Do, that in the same 

period has changed to D = Do*(1+R). 

The formula and the proof are both elegant: in a bank, an account contains the amount a/r. A 

second account receives the interest amount from the first account, r*a/r = a, and its own interest 

amount, thus containing a saving A that is the total interest amount R*a/r, which gives A/a = R/r. 

Precalculus Deals with Constant Change 

Looking at the algebra-square, we thus may define the core of a calculus course as adding and 

splitting into changing per-numbers creating the operations integration and its reverse, differentiation. 

Likewise, we may define the core of a precalculus course as adding and splitting into constant per-

numbers by creating the operation power and its two inverse operations, root and logarithm. 

Adding 7% to 300$ means ‘adding’ the change-factor 107% to 300$ changing it to 300*1.07 

$. Adding 7% n times thus changes 300$ to T = 300*1.07^n $, leading to the formula for change with 

a constant change-factor, also called exponential change, T = b*a^n. Reversing the question, this 

formula entails two equations.  

The first equation asks about an unknown change-percent. Thus, we might want to find which 

percent that added ten times will give a total change-percent 70%, or, formulated with change-factors, 

what is the change-factor, a, that applied ten times gives the change-factor 1.70. So here the job is 

‘factor-finding’ which leads to defining the tenth root of 1.70, i.e., 10√1.70, as predicting the factor, 

a, that applied 10 times gives 1.70: If a^10 = 1.70 then a = 10√1.70 = 1.054 = 105.4%. This is verified 

by testing: 1.054^10 = 1.692. Thus, the answer is ‘5.4% is the percent that added ten times will give 

a total change-percent 70%.’ 

We notice that 5.4% added ten times gives 54% only, so the 16% remaining to 70% is the 

effect of compound interest adding 5.4% also to the previous changes.  
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Here we solve the equation a^10 = 1.70 by moving the exponent to the opposite side with the 

opposite calculation sign, the tenth root, a = 10√1.70. This resonates with the ‘to opposite side with 

opposite calculation sign’ method that also solved the equations a+3 = 7 by a = 7-3, and a*3 = 20 by 

a = 20/3. 

The second equation asks about a time-period. Thus, we might want to find how many times 

7% must be added to give 70%, 1.07^n = 1.70. So here the job is factor-counting which leads to 

defining the logarithm log1.07(1.70) as the number of factors 1.07 that will give a total factor at 1.70: 

If 1.07^n = 1.70 then n = log1.07(1.70) = 7,84 verified by testing: 1.07^7.84 = 1.700.  

We notice that simple addition of 7% ten times gives 70%, but with compound interest it gives 

a total change-factor 1.07^10 = 1.967, i.e., an additional change at 96.7%-70% = 26.7%, explaining 

why only 7.84 periods are needed instead of ten. 

Here we solve the equation 1.07^n = 1.70 by moving the base to the opposite side with the 

opposite calculation sign, the base logarithm, n = log1.07(1.70). Again, this resonates with the ‘to 

opposite side with opposite calculation sign’ method. 

An ideal precalculus curriculum could ‘de-model’ the constant percent change exponential 

formula T = b*a^n to outside real-world problems as a capital in a bank, or as a population increasing 

or radioactive atoms decreasing by a constant change-percent per year. 

De-modeling may also lead to situations where the change-elasticity is constant as in science 

multiplication formulas wanting to relate a percent change in T with a percent change in n. 

An example is the area of a square T = s^2 where a 1% change in the side s will give a 2% 

change in the square, approximately:  

With To = s^2, T1 = (s*1.01)^2 = s^2*1.01^2 = s^2* 1.0201 = To*1.0201. 

Once mastery of constant change-percent is established, it is possible to look at time series in 

statistical tables asking, e.g., ‘How has the unemployment changed over a ten-year period?’ Here two 

answers present themselves. One describes the average yearly change-number by using the constant 

change-number formula, T = b+a*n. The other describes the average yearly change-percent by using 

a constant change-percent formula, T = b*a^n. These average numbers would allow setting up a 

forecast predicting the yearly numbers in the ten-year period, if the numbers were predictable. 

However, they are not, so instead of predicting the number with a formula, we might ‘post-dict’ the 

numbers using statistics dealing with unpredictable numbers, but still trying to predict a plausible 

interval by describing the unpredictable random change by nonfictional numbers, median and 

quartiles, or by fictional numbers, mean and standard deviation. 

Calculus Deals with Adding Per-Numbers by Their Areas 

Likewise, real-world phenomena as unemployment occur in both time and space, so 

unemployment may also change in space, e.g., from one region to another. This leads to double-tables 

sorting the workforce in two categories, region and employment status, also called contingency tables 

or crosstabs. The unit-numbers lead to percent-numbers within each of the categories. To find the 

total employment percent, the single percent-numbers do not add, they must be multiplied back to 

unit-numbers to find the total percent. However, once you multiply you create an area, and adding 

per-numbers by areas is what calculus is about, thus here introduced in a natural way through double-

tables from statistical materials. 

An example: in one region 10 persons have 50% unemployment, in another, 90 persons have 

5% unemployment. To find the total, the unit-numbers can be added directly to 100 persons, but the 

percent-numbers must be multiplied back to numbers: 10 persons have 10*0,5 = 5 unemployed; and 

90 persons have 90*0,05 = 4.5 unemployed, a total of 5+4.5 unemployed = 9.5 unemployed among 

100 persons, i.e., a total of 9.5% unemployment, also called the weighted average. Later, this may be 

renamed to Bayes formula for conditional probability. 

Calculus as adding per-numbers by their areas may also be introduced through mixture 

problems asking, e.g., ‘2kg at 3$/kg + 4kg at 5$/kg gives 6kg at how many $/kg?’ Here, the unit-

numbers 2 and 4 add directly, whereas the per-numbers 3 and 5 must be multiplied to unit-numbers 

before being added, thus adding by their areas. 
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Modeling in Precalculus 

Furthermore, the entry of graphing calculators allows authentic modeling to be included in a 

pre-calculus curriculum thus giving a natural introduction to the following calculus curriculum as 

well.  

Regression translates a table into a formula. Here a two data-set table allows modeling with a 

degree1 polynomial with two algebraic parameters geometrically representing the initial height, and 

a direction changing the height, called the slope or the gradient. And a three data-set table allows 

modeling with a degree2 polynomial with three algebraic parameters geometrically representing the 

initial height, and an initial direction changing the height, as well as the curving away from this 

direction. And a four data-set table allows modeling with a degree3 polynomial with four algebraic 

parameters geometrically representing the initial height, and an initial direction changing the height, 

and an initial curving away from this direction, as well as a counter-curving changing the curving. 

With polynomials above degree1, curving means that the direction changes from a number to 

a formula, and disappears in top- and bottom points, easily located on a graphing calculator, that also 

finds the area under a graph in order to add piecewise or locally constant per-numbers. 

The area A from x = 0 to x = x under a constant per-number graph y = 1 is A = x; and the area 

A under a constant changing per-number graph y = x is A = ½*x^2. So, it seems natural to assume 

that the area A under a constant accelerating per-number graph y = x^2 is A = 1/3*x^3, which can be 

tested on a graphing calculator.  

Now, if adding many small area strips y*x, the total area A =  y*x is always changed by 

the last strip. Consequently, A = y*x, or A/x = y, or dA/dx = y, or A’ = y for very small changes.  

Reversing the above calculations then shows that if A = x, then y = A’ = x’ = 1; and that if A 

= ½*x^2, then y = A’ = (½*x^2)’ = x; and that if A = 1/3*x^3, then y = A’ = (1/3*x^3)’ = x^2.  

This suggest that to find the area under the per-number graph y = x^2 over the distance from 

x = 1 to x = 3, instead of adding small strips we just calculate the change in the area over this distance. 

This makes sense since adding many small strips means adding many small changes, which 

gives just one final change since all the in-between end- and start-values cancel out: 

∫ 𝑦 ∗ 𝑑𝑥
3

1
 = ∫ 𝑑𝐴

3

1
 = 3

1
  = 3

1
 (

1

3
∗ 𝑥3) = end – start = 

1

3
∗ 33 – 

1

3
∗ 13= 9 – 

1

3
 ≈ 8.67 

On the calculus course we just leave out the area by renaming it to a ‘primitive’ or an 

‘antiderivative’ when writing 

∫ 𝑦 ∗ 𝑑𝑥
3

1
 = ∫ 𝑥2 ∗ 𝑑𝑥

3

1
 = 3

1
 (

1

3
∗ 𝑥3) = end – start = 

1

3
∗ 33 – 

1

3
∗ 13= 9 – 

1

3
 ≈ 8.67 

A graphing calculator show that this suggestion holds. So, finding areas under per-number 

graphs not only allows adding per-numbers, it also gives a grounded and natural introduction to 

integral and differential calculus where integration precedes differentiation just as additions precedes 

subtraction. 

From the outside, regression allows giving a practical introduction to calculus by analysing a 

road trip where the per-number speed is measured in five second intervals to respectively 10 m/s, 30 

m/s, 20 m/s 40 m/s and 15 m/s. With a five data-set table we can choose to model with a degree4 

polynomial found by regression. Within this model we can predict when the driving began and ended, 

what the speed and the acceleration was after 12 seconds, when the speed was 25m/s, when 

acceleration and braking took place, what the maximum speed was, and what distance is covered in 

total and in the different intervals. 

Another example of regression is the project ‘Population versus food’ looking at the 

Malthusian warning: If population changes in a linear way, and food changes in an exponential way, 

hunger will eventually occur. The model assumes that the world population in millions changes from 

1590 in 1900 to 5300 in 1990 and that food measured in million daily rations changes from 1800 to 

4500 in the same period. From this 2- line table regression can produce two formulas: with x counting 

years after 1850, the population is modeled by Y1= 815*1.013^x and the food by Y2= 300 + 30x. 

This model predicts hunger to occur 123 years after 1850, i.e., from 1973.  
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Figure 02. A Malthusian model of population and food levels 

An example of an ideal precalculus curriculum is described in a paper called ‘Saving Dropout 

Ryan With a Ti-82’ (Tarp, 2012). To lower the dropout rate in precalculus classes, a headmaster 

accepted buying the cheap TI-82 for a class even if the teachers said students weren’t even able to 

use a TI-30. A compendium called ‘Formula Predict’ (Tarp, 2009) replaced the textbook. A formula’s 

left-hand side and right-hand side were put on the y-list as Y1 and Y2 and equations were solved by 

‘solve Y1-Y2 = 0’. Experiencing meaning and success in a math class, the students put up a speed 

that allowed including the core of calculus and nine projects.  

Besides the two examples above, the compendium also includes projects on how a market 

price is determined by supply and demand, on how a saving may be used for paying off a debt or for 

paying out a pension. Likewise, it includes statistics and probability used for handling questionnaires 

to uncover attitude-difference in different groups, and for testing if a dice is fair or manipulated. 

Finally, it includes projects on linear programming and zero-sum two-person games, as well as 

projects about finding the dimensions of a wine box, how to play golf, how to find a ticket price that 

maximizes a collected fund, all to provide a short practical introduction to calculus. 

With the increased educational interest in STEM, modeling also allows including science-

problems as, e.g., the transfer of heat taking place when placing an ice cube in water or in a mixture 

of water and alcohol, or the transfer of energy taking place when connecting an energy source with 

energy consuming bulbs in series or parallel; as well as technology problems as how to send of a golf 

ball to hit a desired hole, or when to jump from a swing to maximize the jumping length; as well as 

engineering problems as how to build a road inclining 5% on a hillside inclining 10%. 

Furthermore, precalculus allows students to play with change-equations, later called 

differential equations since change is calculated as a difference, T = T2 – T1. Using a spreadsheet, 

it is fun to see the behavior of a total that changes with a constant number or a constant percent, as 

well as with a decreasing number or a decreasing percent, as well as with half the distance to a 

maximum value or with a percent decreasing until disappearing at a maximum value. And to see the 

behavior of a total accelerating with a constant number as in the case of gravity, or with a number 

proportional to its distance to an equilibrium point as in the case of a spring. 

So, by focusing on uniting and splitting into constant per-numbers, the ideal precalculus 

curriculum has constant change-percent as its core. This will cohere with a previous curriculum on 

constant change-number or linearity; as well as with the following curriculum on calculus focusing 

on uniting and splitting into locally constant per-numbers, thus dealing with local linearity. Likewise, 

such a precalculus curriculum is relevant to the workplace where forecasts based upon assumptions 

of a constant change-number or change-percent are frequent. This curriculum is also relevant to the 

students’ daily life as participants in civil society where tables presented in the media are frequent. 

Two Curriculum Examples Inspired by an Ideal Precalculus Curriculum 

An example of a curriculum inspired by the above outline was tested in a Danish high school 

around 1980. The curriculum goal was stated as: ‘the students know how to deal with quantities in 

other school subjects and in their daily life’. The curriculum means included: 

1. Quantities. Numbers and Units. Powers of tens. Calculators. Calculating on formulas. 

Relations among quantities described by tables, curves or formulas, the domain, maximum and 

minimum, increasing and decreasing. Graph paper, logarithmic paper. 

2. Changing quantities. Change measured in number and percent. Calculating total change. 

Change with a constant change-number. Change with a constant change-percent. Logarithms. 
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3. Distributed quantities. Number and percent. Graphical descriptors. Average. Skewness of 

distributions. Probability, conditional probability. Sampling, mean and deviation, normal distribution, 

sample uncertainty, normal test, X ^ 2 test. 

4. Trigonometry. Calculation on right-angled triangles. 

5. Free hours. Approximately 20 hours will elaborate on one of the above topics or to work 

with an area in which the subject is used, in collaboration with one or more other subjects. 

Later, around year 2000, another version was designed but not tested. The curriculum goal 

was stated as: ‘the students develop their number-language so they can participate in social practices 

involving quantitative descriptions of change and shape.’ The curriculum means included 

1. Numbers and calculations. Quantities and qualities. Number-language, word-language, 

meta-language. Unit-numbers and per-numbers, and how to calculate their totals. Equations as 

predicting statements. Forwards and reverse calculations.  

2. Change calculations. Change measuring change with change-number and change-percent 

and index-number. Calculation rules for the change of a sum, a product and a ratio. 

3. Constant change. Change with a constant change-number. Change with a constant change-

percent. Change with both. 

4. Unpredictable change. Fractals, mean and deviation, 95% confidence interval. Binomial 

distribution approximated by a normal distribution.  

Distributed quantities. Number and percent. Graphical descriptors. Average. Skewness of 

distributions. Probability, conditional probability. Sampling, mean and deviation, normal distribution, 

sample uncertainty, normal test, X ^ 2 test. 

5. Trigonometry. Dividing and measuring earth. Calculation the sides and angles in a triangle. 

06. Precalculus in the Danish parallel high school, a case study 

In the post-war era, the Organization for Economic Co-operation and Development (OECD) 

called for increasing the population knowledge level, e.g., by offering a second chance to take a high 

school degree giving entrance to tertiary education. In Denmark in 1966, this resulted in creating a 

two-year education called ‘Higher preparation exam’ as a parallel to the traditional high school. Two 

levels of two-years mathematics courses were included, a basic precalculus course for those who did 

not choose the calculus course. 

The 1966 Curriculum 

The precalculus curriculum came from leaving out small parts of the calculus curriculum, thus 

being an example of a reduced curriculum.  

The goal of the calculus course stated it should ‘supply students with knowledge about basic 

mathematical thinking and about applications in other subject areas, thus providing them with 

prerequisites for carrying through tertiary education needing mathematics.’ 

The goal of the precalculus course was reduced to ‘supplying students with an impression of 

mathematical thinking and method and to mediate mathematical knowledge useful also to other 

subject areas.’  

So, where the calculus curriculum has to cohere and be relevant to tertiary education needing 

mathematics, the precalculus course is a parallel curriculum meant to be relevant to the students 

themselves and to other high school subjects. 

The content of the precalculus curriculum had five sections.  

The first section contained basic concepts from set theory as sets, subsets, complementary set, 

union, intersection, product, difference. The function concept. Mapping into an on a different set, 

one-to one mapping, inverse mapping (inverse function), composite mappings. The calculus 

curriculum added nothing here. 

Section two contained concepts from abstract algebra: Composition rules. The associative 

law. The commutative law. Neutral element. Inverse element. The group concept with examples. 

Rules for operations on real numbers. Numeric value. Here the calculus curriculum added the 

distributive law, the concept of a ring and a field, the ring of whole numbers as well as quotient 

classes. The calculus curriculum added nothing here. 
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Section three contained equations and inequalities. Examples on open statements in one or 

two variables. Equations and inequalities of degree one and two with one unknown. Equations and 

inequalities with the unknown placed inside a square root or a numeric sign. Simple examples of 

Equations and inequalities of degree one and two with two unknowns. Graphical illustration. The 

calculus curriculum added nothing here. 

Section four contained basic functions. The linear function in one variable. A piecewise linear 

function. The second-degree polynomial. The logarithm function with base ten, the logarithmic scale, 

the calculator stick, the use of logarithm tables. Trigonometric functions, tables with functions values. 

Calculations on a right-angled triangle using trigonometric functions. Here the calculus curriculum 

added rational functions in one variable, exponential functions, and the addition formulas and 

logarithmic formulas in trigonometry. 

Section five contained combinatorics. The multiplication principle. Permutations and 

combinations. Here the calculus curriculum added probability theory, probability field, and examples 

of probability based upon combinatorics. 

Finally, the calculus curriculum added a section about calculus. 

The new set-based mathematics coming into education around 1960 inspired the 1966 

precalculus curriculum thus cohering with the university mathematics at that time, but it was not 

especially relevant to the students. Many had difficulties understanding it and they often complained 

about seeing no reason for learning it or why it was taught.  

In my own class, I presented it as a legal game where we were educating us to become lawyers 

that could convince a jury that we were using lawful methods to solving equations in one of two 

different methods by referring to the relevant paragraphs in the law. The first method was the 

traditional one used at that time way by moving numbers to the opposite side with opposite calculation 

sign, now legitimized by the theorem that in a group the equation a*u = b has as a solution a^-1*b. 

The second method was a new way with many small steps where, for each step, you have to refer to 

laws for associativity, and commutativity etc.; and, where a group contained exactly the paragraphs 

needed to use this method. Once seen that way, the students found it easy but boring. However, they 

accepted since they needed the exam to go on, and we typically finished the course in half time 

allowing time for writing a script for a movie to be presented at the annual gala party.  

So, all in all, the 1963 curriculum was coherent with the next step, calculus, and with the 

university math view at that time, set-based; but it was mostly irrelevant to the students. 

The 1974 Curriculum 

The student rebellion in 1968 asked for relevance in education, which led to a second 

precalculus in 1974 revision. Here the goal was stated as ‘giving the students a mathematical 

knowledge that could be useful to other subjects and to their daily life, as well as an impression of 

mathematical methods thinking’. Now the curriculum structure was changed from a parallel one to a 

serial one where all students took the precalculus course and some chose to continue with the calculus 

course afterwards just specifying in its curriculum what was needed to be added. 

The 1974 precalculus curriculum now had four sections.  

The first section contained concepts from set theory and logic and combinatorics. Set, subset; 

solution set to an open statement, examples on solving simple equations and inequalities in one 

variable; the multiplication principle, combinations. 

Section two contained the function concepts: Domain, function value, range; injective 

function; monotony intervals; inverse function, composite function. 

Section three contained special functions; graphical illustration. A linear function, a piecewise 

linear function, an exponential function; examples of functions defined by tables; coordinate system, 

logarithmic paper. 

Section four contained descriptive statistics. Observations described by numbers; frequency 

and their distribution and cumulated distribution; graphical illustration; statistical descriptors. 
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Section five described probability and statistics. A random experiment, outcome space, 

probability function, probability field; sampling; binomial distribution; binomial testing with zero 

hypothesis, critical set, significance level, single and double-sided test, failure of first degree. 

Section six was called ‘Free lessons’. 20m lessons are to be used for studying details in one 

of the above sections, or together with one or more other school subjects to work with an area applying 

mathematics. 

The second 1974 curriculum thus maintains a basis of set-theory but leaves out the abstract 

algebra. As to functions, it replaces the second-degree polynomial with the exponential function. Here 

trigonometry is excluded to be included in the calculus curriculum. 

The combinatorics section is to great extent replaced by descriptive statics. 

Finally, the section has been added with quite detailed probability theory and testing theory 

within statistics. 

All in all, the coherence with the university set-based mathematics has been softened by 

leaving out abstract algebra and second-degree polynomial. Instead of introducing a first-degree 

polynomial together with a second-degree polynomial, the former now is introduced as a linear 

function together with the exponential function allowing modelling outside change with both a 

constant change-number and a constant change-percent. This makes the curriculum more relevant to 

the students individually as well as to other high school subjects as required by the goal statement. 

The quite detailed section on testing theory was supposed to make the curriculum more 

relevant to students but the degree of detail make it fail to do so by drowning in quite abstract 

concepts. 

The 1990 Curriculum 

As the years passed on it was observed that the free hours were used on trigonometry, and on 

savings and instalments, the first cohering with the following calculus course, the latter highly 

relevant to many students, and at the same time combining linear and exponential change, the core of 

the curriculum. This let to designing an alternative curriculum around 1990 to choose instead of the 

standard curriculum if wanted. 

The 1990 curriculum did not change the goal but included the following subjects 

1) Numbers, integers, rational and real numbers together with their calculation rules. Number 

sets. Calculations with power and root. 

2) Calculations including percent and interest rates: Average percent, index number, weighed 

average. Simple and compound interest, saving and installments. 

3) Geometry and trigonometry. Similar triangles. Right triangles. Calculations on sides and 

angles. 

4) Functions. The function concept, domain, functional values, range, monotony. Various 

ways to define a function. Elementary functions as linear, piecewise linear and exponential growth 

and decay. Coordinate system. Examples of simple equations and inequalities including the functions 

mentioned above. 

5) Probability and statistics. A stochastic experiment. Discrete stochastic variables, 

probability distribution, mean value, binomial distribution, observation sets described graphically, 

representation by statistical descriptors, examples of a normal distribution, normal distribution paper. 

6) Calculation aids. Pocket calculator, formulas, tables, semi logarithmic paper, normal 

distribution paper. 

The 2005 Curriculum 

Then a major reform of the Danish upper secondary high school was planned for 2005. As to 

precalculus, it was inspired by the entry of graphing calculators and computer assisted systems 

allowing regression to transform tables into formulas, thus allowing realistic modeling to be included. 

Now the goal defined the competences students should acquire:  

The students can  

• handle simple formulas and translate between symbolic and natural language and use 

symbolic language to solve simple problems with a mathematical content. 
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• apply simple statistical models for describing a given data set, pose questions based upon the 

model and sense what kind of answers are to be expected and knows how to formulate 

conclusion in a clear language. 

• apply relations between variables to model a given data set, can make forecasts, and can 

reflect on them and their domain of relevance 

• describe geometrical models and solve geometrical problems 

• produce simple mathematical reasoning  

• demonstrate knowledge about mathematical methods, applications of mathematics, and 

examples of cooperation between mathematics and other sciences, as well as its cultural and 

historical development 

• apply information technology for solving mathematical problems  

The means include  

The hierarchy of operations, solving equations graphically and with simple analytical 

methods, calculating percent and interest rates, absolute and relative change 

Formulas describing direct and inverse proportionality as well as linear, exponential ad power 

relations between variables 

Simple statistical methods for handling data sets, graphical representation of statistical 

materials, simple statistical descriptors 

Ratios in similar triangles and trigonometry used for calculations in arbitrary triangles. 

xy-plot of data sets together with characteristics of linear, exponential and power relations, 

the use of regression. 

Additional activities for 25 lessons are examples of mathematical reasoning and proofs, 

modeling authentic data sets, examples of historical mathematics. 

The 2017 Curriculum 

Then in 2017 e new reform was made to inspire more students to continue with the calculus 

level by moving some subjects to the precalculus level: 

• interpreting the slope of a tangent as a growth rate in a mathematical model 

• combinatorics, basic probability theory and symmetrical probability space 

• the function concept and characteristics of linear, exponential and power functions and their 

graphs 

• graphical handling of a quadratic function, and the logarithm functions and their 

characteristics  

• graphical determination of a tangent, and monotony intervals, as well as finding extrema 

values in a closed interval 

• prime characteristics at mathematical models and simple modelling using the functions 

above alone or in combination. 

Relevance and Coherence 

The 1966 had internal coherence with the previous and following curriculum, but with the 

emphasis on abstract algebra, there was little external coherence. It was indirectly relevant to students 

wanting later to take a calculus course but only little relevant to the daily life of students 

The 1972 curriculum took the consequence and changed from a parallel curriculum to a serial 

curriculum so that it had internal coherence to the calculus curriculum, and by replacing quadratics 

with exponential functions, it obtained an external relevance to change calculations with a constant 

change-number or a constant change-percent. Also, including a considerable amount of probability 

gave coherence to eternal testing situations, however these were not part of student daily life, so they 

didn’t add to the relevance for students. However, including the free lessons allowed the students to 

choose areas that they found relevant, in this case interest rates and saving and installment 

calculations as well as trigonometry. 

The 1990 curriculum was inspired by this and re-included trigonometry and interest rates 

while at the same time reducing probability a little. 
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The 2005 reform was informed by the occurrence of competence concept as well as the 

advances in calculation technology. Her the function concept was replaced by variables to make it 

cohere more with external applications in science and economics and daily life. Now the probability 

was gone, so this curriculum showed coherence and relevance to external appliers and to the student’s 

daily life as well for other school subjects. It was close to the ideal precalculus curriculum. 

The 2017 reform was inspired by the wish to motive more to continue with a calculus course, 

so part of this was moved down to the precalculus level, making the two levels cohere better, however 

the things imported had little relevance to the students’ daily life. 

A Refugee Camp Curriculum 

The name ‘refugee camp curriculum’ is a metaphor for a situation where mathematics is 

taught from the beginning and with simple manipulatives. Thus, it is also a proposal for a curriculum 

for early childhood education, for adult education, for educating immigrants and for learning 

mathematics outside institutionalized education. It considers mathematics a number-language parallel 

to our word-language, both describing the outside world in full sentences, typically containing a 

subject and a verb and a predicate. The task of the number-language is to describe the natural fact 

Many in space and time, first by counting and recounting and double-counting to transform outside 

examples of Many to inside sentences about the total; then by adding to unite (or split) inside totals 

in different ways depending on their units and on them being constant or changing. This allows 

designing a curriculum for all students inspired by Tarp (2018) that focuses on proportionality, 

solving equations and calculus from the beginning, since proportionality occurs when recounting in 

a different unit, equations occur when recounting from tens to icons, and calculus occurs when adding 

block-numbers next-to and when adding per-numbers coming from double-counting in two units.  

Talking about ‘refugee camp mathematics’ thus allows locating a setting where children do 

not have access to normal education, thus raising the question ‘What kind and how much mathematics 

can children learn outside normal education especially when residing outside normal housing 

conditions and without access to traditional leaning materials?’. This motivates another question 

‘How much mathematics can be learned as ‘finger-math’ using the examples of Many coming from 

the body as fingers, arms, toes and legs?’ 

So the goal of ‘refugee camp mathematics’ is to learn core mathematics through ‘Finger-math’ 

disclosing how much math comes from counting the fingers. 

Focus 01. Digits as Icons with as Many Outside Sticks and Inside Strokes as They Present 

Activity 01. With outside things (sticks, cars, dolls, animals), many ones are rearranged into 

one many-icon with as many things as it represents. Inside, we write the icon with as many strokes 

as it represents. Observe that the actual digits from 1 to 9 are icons with as many strokes as they 

represent if written less sloppy. A discovery glass showing nothing is an icon for zero. When counting 

by bundling in tens, ten become ‘1 Bundle, 0 unbundled’ or 1B0 or just 10, thus needing no icon since 

after nine, a double-counting takes place of bundles and unbundled. 

Focus 02. Counting Ten Fingers in Various Ways 

Activity 01. Double-count ten fingers in bundles of 5s and in singles 

● Outside, lift the finger to be counted; inside say ‘0 bundle 1, 0B2, 0B3, 0B4, 0B5 or 1B0. 

Then continue with saying ‘1B1, …, 1B5 or 2B’. ● Outside, look at the fingers not yet counted; inside 

say ‘1 bundle less4, 1B-3, 1B-2, 1B-1, 1B or 1B0. Then continue with saying ‘2B-4, …, 2B or 2B0’. 

● Outside, show the fingers as ten ones. ● Outside, show ten fingers as 1 5s and 5 1s; inside say ‘The 

total is 1Bundle5 5s’ and write ‘T = 1B5 5s’. ● Outside, show ten fingers as 2 5s; inside say ‘The 

total is 2Bundle0 5s’ and write ‘T = 2B0 5s’. 

Activity 02. Double-count ten fingers in bundles of tens and in singles 

● Outside, lift the finger to be counted; inside say ‘0 bundle 1, 0B2, 0B3, …, 0B9, 0Bten, or 

1B0’. ● Outside, look at the fingers not yet counted; inside say ‘1 bundle less9, 1B-8, …, 1B-2, 1B-

1, 1B or 1B0.  

Activity 03. Counting ten fingers in bundles of 4s using ‘flexible bundle-numbers’.  
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● Outside, show the fingers as ten ones, then as one tens. ● Outside, show ten fingers as 1 4s 

and 6 1s; inside say ‘The total is 1Bundle6 4s, an overload’ and write ‘T = 1B6 4s’ ● Outside, show 

ten fingers as 2 4s and 2 1s; inside say ‘The total is 2Bundle2 4s, a standard form’ and write ‘T = 2B2 

4s’. ● Outside, show ten fingers as 3 4s less 2; inside say ‘The total is 3Bundle, less2, 4s, an underload’ 

and write ‘T = 3B-2 4s’. 

Activity 04. Counting ten fingers in bundles of 3s using ‘flexible bundle-numbers’. 

● Outside, show ten fingers as 1 3s and 7 1s; inside say ‘The total is 1Bundle7 3s, an overload’ 

and write ‘T = 1B7 3s’. ● Outside, show ten fingers as 2 3s and 4 1s; inside say ‘The total is 2Bundle4 

3s, an overload’ and write ‘T = 2B4 3s’. ● Outside, show ten fingers as 3 3s and 1 1s; inside say ‘The 

total is 3Bundle1 3s, a standard form’ and write ‘T = 3B1 3s’. ● Outside, show ten fingers as 4 3s 

less 2; inside say ‘The total is 4Bundle, less2, 3s, an underload’ and write ‘T = 4B-2 3s’.  

Activity 05. Counting ten fingers in bundles of 3s, now also using bundles of bundles. 

● Outside, show ten fingers as 3 3s (a bundle of bundles) and 1 1s; inside say ‘The total is 

1BundleBundle1 3s’ and write ‘T = 1BB1 3s’. Now, inside say ‘The total is 1BundleBundle 0 Bundle 

1 3s’ and write ‘T = 1BB 0B 1 3s’. Now, inside say ‘The total is 1BundleBundle 1 Bundle, less2, 3s’ 

and write ‘T = 1BB 1B -2 3s’. 

Focus 03. Counting Ten Sticks in Various Ways 

The same as Focus 02, but now with sticks instead of fingers. 

Focus 04. Counting Ten Cubes in Various Ways 

The same as Focus 02, but now with cubes, e.g., centi-cubes or Lego Bricks, instead of fingers. 

When possible, transform multiple bundles into 1 block, e.g., 2 4s = 1 2x4 block; inside say ‘The total 

is 1 2x4 block’ and write ‘T = 2B0 4s.’ 

Focus 05. Counting a Dozen Finger-parts in Various Ways 

Except for the thumps, our fingers all have three parts. So, four fingers have three parts four 

times, i.e., a total of T = 4 3s = 1 dozen finger-parts. 

Focus 05 is the same as focus 02, but now with a dozen finger-parts instead of ten fingers. 

Focus 06. Counting a Dozen Sticks in Various Ways 

Focus 06 is the same as focus 03, but now with a dozen sticks instead of ten. 

Focus 07. Counting a Dozen Cubes in Various Ways 

Focus 07 is the same as focus 04, but now with a dozen cubes instead of ten. 

Focus 08. Counting Numbers with Underloads and Overloads. 

Activity 01. Totals counted in tens may also be recounted in under- or overloads. 

● Inside, rewrite T = 23 as T = 2B3 tens, then as 1B13 tens, then as 3B-7tens. ● Try other 

two-digit numbers as well. ● Inside, rewrite T = 234 as T = 2BB3B4 tens, then as T = 2BB 2B14, 

then as T = 2BB 4B-6. Now rewrite T = 234 as T = 23B4, then as 22B14, then as 24B-6. Now rewrite 

T = 234 as T = 3BB-7B4, then as 3BB-6B-6. ● Try other three-digit numbers as well. 

Focus 09. Operations as Icons Showing Pushing, Lifting and Pulling 

Activity 01. Transform the three outside counting operations (push, lift and pull) into three 

inside operation-icons: division, multiplication and subtraction.  

● Outside, place five sticks as 5 1s. ● Outside, push away 2s with a hand or a sheet; inside 

say ‘The total 5 is counted in 2s by pushing away 2s with a broom iconized as an uphill stroke’ and 

write ‘T = 5 = 5/2 2s’. ● Outside, rearrange the 2 2s into 1 2x2 block by lifting up the bundles into a 

stack; inside say ‘The bundles are stacked into a 2x2 block by lifting up bundles iconized as a lift’ 

and write ‘T = 2 2s = 2x2’. ● Outside, pull away the 2x2 block to locate unbundled 1s; inside say 

‘The 2x2 block is pulled away, iconized as a rope’ and write ‘T = 5 – 2x2 = 1’.  

Five counted in 2s: 

 I I I I I   (push away 2s)   II  II  I   (lift to stack)       
II
II

 I      (pull to find unbundles ones)       
II
II

      I 

Focus 10. The Inside Recount-Formula T = (T/B)xB Predicts Outside Bundlecounting Results  

Activity 01. Use a calculator to predict a bundle-counting result by a recount-formula T = 

(T/B)xB, saying ‘from T, T/B times, B is pushed away’, thus using a full number-language sentence 

with a subject, a verb and a predicate. 
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● Outside, place five cubes as 5 1s. ● Outside, push away 2s with a ‘broom’; inside say ‘Asked 

‘5/2’, a calculator answers ‘2.some’, meaning that 2 times we can push ways bundles of 2s. ● Outside, 

stack the 2s into one 2x2 stack by lifting; inside say ‘We lift the 2 bundles into one 2x2 stack, and we 

write T = 2 2s = 2x2 ● Outside, we locate the unbundled by, from 5 pulling away the 2x2 block; 

inside we say ‘Asked ‘5-2x2’, a calculator answers ‘1’. We write T = 2B1 2s and say ‘The recount-

formula predicts that 5 recounts in 2s as T = 2B1 2s, which is tested by recounting five sticks manually 

outside.’  

Activity 02. The same as activity 01, but now with 4 3s counted in 5s, 4s and 3s. 

Focus 11. Discovering Decimals, Fractions and Negative Numbers.  

Activity 01. When bundle-counting a total, the unbundled can be placed next-to or on-top. 

● Outside, chose seven cubes to be counted in 3s. ● Outside, push away 3s to be lifted into a 

2x3 stack to be pulled away to locate one unbundled single. Inside use the recount-formula to predict 

the result, and say ‘seven ones recounts as 2B1 3s’ and write T = 2B1 3s. ● Outside, place the single 

next-to the stack. Inside say ‘Placed next-to the stack the single becomes a decimal-fraction ‘.1’ so 

now seven recounts as 2.1 3s’ and write T = 2.1 3s. ● Outside, place the single on-top of the stack. 

Inside say ‘Placed on-top of the stack the single becomes a fraction-part 1 of 3, so now seven recounts 

as 2 1/3 3s’ and write T = 2 1/3 3s. Now, inside say ‘Placed on-top of the stack the single becomes a 

full bundle less 2, so now seven recounts as 3.-2 3s’ and write T = 3.-2 3s. Finally, inside say ‘With 

3 3s as 1 bundle-bundle of 3s, seven recounts as 1BB-2 3s.’ 

Activity 02. The same as activity 01, but now with first 2 then 3 until a dozen counted in 3s.  

Activity 03. The same as activity 01, but now with first 2 then 3 until a dozen counted in 4s.  

Activity 04. The same as activity 01, but now with first 2 then 3 until a dozen counted in 5s.  

Focus 12. Recount in a New Unit to Change Units, Predicted by the Recount-Formula 

Activity 01. When bundle-counting, all numbers have units that may be changed into a new 

unit by recounting predicted by the recount-formula. 

● Outside, chose 3 4s to be recounted in 5s. ● Outside, rearrange the block in 5s to find the 

answer T = 3 4s = 2B2 5s. Inside use the recount-formula to predict the result, and say ‘three fours 

recounts as 2B2 5s’ and write T = 3 4s = 2B2 5s = 3B-3 5s = 2 2/5 5s. Repeat with other examples 

as, e.g., 4 5s recounted in 6s. 

Focus 13. Recount from Tens to Icons 

Activity 01. A total counted in tens may be recounted in icons, traditionally called division. 

● Outside, chose 29 or 2B9 tens to be recounted in 8s. ● Outside, rearrange the block in 8s to 

find the answer T = 29 = 3B5 8s and notice that a block that decreases its base must increase its height 

to keep the total the same. Inside use the recount-formula to predict the result, and say ‘With the 

recount-formula, a calculator predicts that 2 bundle 9 tens recounts as 3B5 8s’ and write T = 29 = 

2B9 tens = 3B 5 8s = 4B-3 8s = 3 5/8 8s. Repeat with other examples as, e.g., 27 recounted in 6s. 

* Now, inside reformulate the outside question ‘T = 29 = ? 8s’ as an equation using the letter 

u for the unknown number, u*8 = 24, to be solved by recounting 24 in 8s: T = u*8 = 24 = (24/8)*8, 

so that the unknown number is u = 24/8, attained by moving 8 to the opposite side with the opposite 

sign. Use an outside ten-by-ten abacus to see that when a block decreases its base from ten to 8, it 

must increase its height from 2.4 to 3. Repeat with other examples as, e.g., 17 = ? 3s. 

Focus 14. Recount from Icons to Tens  

Activity 01. Oops, without a ten-button, a calculator cannot use the recount-formula to predict 

the answer if asking ‘T = 3 7s = ? tens’. However, it is programmed to give the answer directly by 

using multiplication alone: T = 3 7s = 3*7 = 21 = 2.1 tens, only it leaves out the unit and misplaces 

the decimal point. Use an outside ten-by-ten abacus to see that when a block increases its base from 

7 to ten, it must decrease its height from 3 to 2.1. 

Activity 02. Use ‘less-numbers’, geometrically on an abacus, or algebraically with brackets: 

T = 3*7 = 3 * (ten less 3) = 3 * ten less 3*3 = 3ten less 9 = 3ten less (ten less1) = 2ten less less 1 = 

2ten & 1 = 21. Consequently ‘less less 1’ means adding 1.  

Focus 15. Double-Counting in Two Physical Units  
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Activity 01. We observe that double-counting in two physical units creates ‘per-numbers’ as, 

e.g., 2$ per 3kg, or 2$/3kg. To bridge units, we recount in the per-number: Asking ‘6$ = ?kg’ we 

recount 6 in 2s: T = 6$ = (6/2)*2$ = (6/2)*3kg = 9kg; and T = 9kg = (9/3)*3kg = (9/3)*2$ = 6$. 

Repeat with other examples as, e.g., 4$ per 5days. 

Focus 16. Double-Counting in the Same Unit Creates Fractions 

Activity 01. Double-counting in the same unit creates fractions and percent as 4$/5$ = 4/5, or 

40$/100$ = 40/100 = 4%. Finding 40% of 20$ means finding 40$ per 100$ so we re-count 20 in 100s: 

T = 20$ = (20/100)*100$ giving (20/100)*40$ = 8$. Finding 3$ per 4$ in percent, we recount 100 in 

4s, that many times we get 3$: T = 100$ = (100/4)*4$ giving (100/4)*3$ = 75$ per 100$, so ¾ = 

75%. We observe that per-numbers and fractions are not numbers, but operators needing a number to 

become a number. Repeat with other examples as, e.g., 2$/5$. 

Focus 17. Mutually Double-Counting the Sides in a Block Halved by its Diagonal  

Activity 01. Recount sides in a block halved by its diagonal? Here, in a block with base b, 

height a, and diagonal c, recounting creates the per-numbers: a = (a/c)*c = sinA*c; b = (b/c)*c = 

cosA*c; a = (a/b)*b = tanA*b. Use these formulas to predict the sides in a half-block with base 6 and 

angle 30 degrees. Use these formulas to predict the angles and side in a half-block with base 6 and 

height 4.  

Focus 18. Adding Next-to 

Activity 01. With T1 = 2 3s and T2 = 3 5s, what is T1+T2 when added next-to as 8s?’ Here 

the learning opportunity is that next-to addition geometrically means adding by areas, so 

multiplication precedes addition. Algebraically, the recount-formula predicts the result. Since 3*5 is 

an area, adding next-to in 8s means adding areas, called integral calculus. Asking a calculator, the 

two answers, ‘2.some’ and ‘5’, predict the result as 2B5 8s. 

Focus 19. Reversed Adding Next-to 

Activity 01. With T1 = 2 3s and T2 adding next-to as T = 4 7s, what is T2?’ Here the learning 

opportunity is that when finding the answer by removing the initial block and recounting the rest in 

3s, subtraction precedes division, which is natural as reversed integration, also called differential 

calculus. Asking ‘3 5s and how many 3s total 2B6 8s?’, using sticks will give the answer 2B1 3s. 

Adding or integrating two stacks next-to each other means multiplying before adding. Reversing 

integration then means subtracting before dividing, as shown in the gradient formula  

y’ = y/t = (y2 – y1)/t. 

Focus 20. Adding On-top 

Activity 01. With T1 = 2 3s and T2 = 3 5s, what is T1+T2 when added on-top as 3s; and as 

5s?’ Here the learning opportunity is that on-top addition means changing units by using the recount-

formula. Thus, on-top addition may apply proportionality; an overload is removed by recounting in 

the same unit. Adding on-top in 5s, ‘3 5s + 2 3s = ? 5s?’, re-counting must make the units the same. 

Asking a calculator, the two answers, ‘4.some’ and ‘1’, predict the result as 4B1 5s.  

Focus 21. Reversed Adding On-top 

Activity 01. With T1 = 2 3s and T2 as some 5s adding to T = 4 5s, what is T2?’ Here the 

learning opportunity is that when finding the answer by removing the initial block and recounting the 

rest in 5s, subtraction precedes division, again called differential calculus. An underload is removed 

by recounting. Reversed addition is called backward calculation or solving equations.  

Focus 22. Adding Tens  

Activity 01. With T1 = 23 and T2 = 48, what is T1+T2 id added as tens?’ Recounting removes 

an overload: T1+T2 = 23 + 48 = 2B3 + 4B8 = 6B11 = 7B1 = 71. 

Focus 23. Subtracting Tens  

Activity 01. ‘If T1 = 23 and T2 add to T = 71, what is T2?’ Here, recounting removes an 

underload: T2 = 71 – 23 = 7B1 – 2B3 = 5B-2 = 4B8 = 48; or T2 = 956 – 487 = 9BB5B6 – 4BB8B7 

= 5BB-3B-1 = 4BB7B-1 = 4BB6B9 = 469. Since T = 19 = 2.-1 tens, T2 = 19 -(-1) = 2.-1 tens take 

away -1 = 2 tens = 20 = 19+1, so -(-1) = +1.  

Focus 24. Multiplying Tens  
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Activity 01. ‘What is 7 43s recounted in tens?’ Here the learning opportunity is that also 

multiplication may create overloads: T = 7*43 = 7*4B3 = 28B21 = 30B1 = 301; or 27*43 = 2B7*4B3 

=8BB+6B+28B+21 =8BB34B21 =8BB36B1 = 11BB6B1 = 1161, solved geometrically in a 2x2 

block.  

Focus 25. Dividing Tens  

Activity 01. ‘What is 348 recounted in 6s?’ Here the learning opportunity is that recounting a 

total with overload often eases division: T = 348 /6 = 34B8 /6 = 30B48 /6 = 5B8 = 58; and T = 349 

/6 = 34B9 /6 = 30B49 /6 = (30B48 +1) /6 = 58 + 1/6. 

Focus 26. Adding Per-Numbers  

Activity 01. ‘2kg of 3$/kg + 4kg of 5$/kg = 6kg of what?’ Here we see that the unit-numbers 

2 and 4 add directly whereas the per-numbers 3 and 5 add by areas since they must first transform to 

unit-numbers by multiplication, creating the areas. Here, the per-numbers are piecewise constant. 

Later, asking 2 seconds of 4m/s increasing constantly to 5m/s leads to finding the area in a ‘locally 

constant’ (continuous) situation defining local constancy by epsilon and delta. 

Activity 02. Two groups of voters have a different positive attitude to a proposal. How to find 

the total positive attitude? 

● Asking ‘20 voters with 30% positive + 60 voters with 10% positive = 80 voters with ? 

positive.’ Here we see that the unit-numbers 20 and 40 add directly whereas the per-numbers 30% 

and 10% add by areas since they must first transform to unit-numbers by multiplication, creating the 

areas.  

Focus 27. Subtracting Per-Numbers  

Activity 01. ‘2kg of 3$/kg + 4kg of what = 6kg of 5$/kg?’ Here the learning opportunity is 

that unit-numbers 6 and 2 subtract directly whereas the per-numbers 5 and 3 subtract by areas since 

they must first transform into unit-number by multiplication, creating the areas. Later, in a ‘locally 

constant’ situation, subtracting per-numbers is called differential calculus.  

Focus 28. Adding Differences 

Activity 01. Adding many numbers is time-consuming, but not if the numbers are changes, 

then the sum is simply calculated as the change from the start to the end-number. 

 ● Write down ten numbers vertically. The first number must be 3 and the last 5, the rest can 

be any numbers between 1 and 9. In the next column write down the individual changes ‘end-start’. 

In the third column add up the individual changes along the way. Try to explain why the result must 

be 5-3 regardless of the in-between numbers. 

● Draw a square with side n. Let n have a small positive change t. Show that the square will 

change with two next blocks when disregarding the small txt square. This shows that the change in 

an n*n square is 2*n*t, so if we want to add arears under a y = 2*n curve we must add very many 

small areas y*t = 2*n*t. However, since each may be written as a change in a square, we just have to 

find the change of the square from the start-point to the end-point. That is how integral calculus 

works. 

Focus 29. Finding Common Units 

Activity 01. ‘Only add with like units, so how add T = 4ab^2 + 6abc?’. Here units come from 

factorizing: T = 2*2*a*b*b + 2*3*a*b*c = 2*b*(2*a*b). 

Focus 30. Finding Square Roots 

Activity 01. A 7x7 square can be recounted in tens as 4.9 tens. The inverse question is how to 

transform a 6x7 block into a square, or in other words, to find the square root of 4.2 tens. A quick 

way to approach a relevant number is to first find two consecutive numbers, p and p+1, that squared 

are too low and too high. Then the an approximate value for the square root may be calculated by 

using that if p^2 < N < (p+1)^2, then √N ≈ 
N+ p^2

𝑝∗2
. 
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Summing Up 

A curriculum for a refugee camp assumes that the learners have only the knowledge they 

acquire outside traditional education. The same is the case for street children living outside traditional 

homes; and for nomadic people always moving around. 

However, a refugee camp curriculum might also be applied in a traditional school setting 

allowing the children to keep on to the two-dimensional block numbers they bring to school allowing 

them to learn core mathematics as proportionality, equations, functions and calculus in the first grade, 

thus not needing parallel curricula later on. 

So, the need for parallel curricula after grade 9 is not there by nature, but by choice. It is the 

result of disrespecting the mastery of many children bring to school and force them to adopts numbers 

as names along a number line, and force them to add numbers that are given to them without allowing 

them to find them themselves by counting, recounting and double-counting. 

Do We Really Need Parallel Curricula? 

Why do we need different curricula for different groups of students? Why can’t all students 

have the same curriculum? After all, the word-language does not need different curricula for different 

groups, so why does the number-language?  

Both languages have two levels, a language level describing the ‘outside’ world, and a 

grammar level describing the ‘inside’ language. In the word-language, the language level is for all 

students and includes many examples of real-world descriptions, both fact and fiction. Whereas 

grammar level details are reserved for special students.  

Could it be the same with the number-language, teaching the language level to all students 

including many examples of fact and fiction? And reserving grammar level details to special students? 

Before 1970, schools taught language as an example of its grammar (Chomsky, 1965). Then 

a reaction emerged in the so-called ‘communicative turn’ in language education. In his book 

‘Explorations in the function of language’ Halliday (1973, p. 7) defines a functional approach to 

language in the following way: 

A functional approach to language means, first of all, investigating how language is used: 

trying to find out what are the purposes that language serves for us, and how we are able to achieve 

these purposes through speaking and listening, reading and writing. But it also means more than this. 

It means seeking to explain the nature of language in functional terms: seeing whether language itself 

has been shaped by use, and if so, in what ways - how the form of language has been determined by 

the functions it has evolved to serve. 

Likewise, Widdowson (1978) adopts a ‘communicative approach to the teaching of language 

(p. ix)’ allowing more students to learn a less correct language to be used for communication about 

outside things and actions. Thus, in language teaching the communicative turn changed language 

from being inside grammar-based to being outside world-based. However, this version never made it 

to the sister-language of the word-language, the number-language. So, maybe it is time to ask how 

mathematics will look like if 

• instead of being taught as a grammar, it is taught as a number-language communicating 

about outside things and actions. 

• instead of learned before its use, it is learned through its use 

• instead of learning about numbers, students learn how to number and enumerate, and how to 

communicate in full sentences with an outside subject, a linking verb, and an inside 

predicate as in the word- language. 

After all, the word language seems more voluminous with its many letters, words and sentence 

rules. In contrast, a pocket calculator shows that the number language contains ten digits together 

with a minor number of operations and an equal sign.  

And, where letters are arbitrary signs, digits are close to being icons for the number they 

represent, 5 strokes in the 5-icon etc. (Tarp, 2018) 



23 

          I         II           III          IIII         IIIII        IIIIII        IIIIIII      IIIIIIII     IIIIIIIII  

                                                                                                                                  1          2             3             4             5              6            7              8             9 

Figure 03. Digits as icons with as many sticks as they represent. 

Furthermore, also the operations are icons describing how we total by counting unbundled, 

bundles, bundles of bundles etc. Here division iconizes pushing away bundles to be stacked, iconized 

by a multiplication lift, again to be pulled away, iconized by a subtraction rope, to identify unbundled 

singles that are placed next-to the stack iconized by an addition cross, or by a decimal point; or on-

top iconized by a fraction or a negative number.  

                         
                         
                         

Figure 04. Seven counted as 2 3s & 1 or 2B1 3s, and 2.1 3s, and as 2 1/3 3s or 3.-2 3s. 

The operations allow predicting counting by a recount-sentence or formula ‘T = (T/B)*B’ 

saying that ‘from T, T/B times, B can be taken away’, making natural numbers as bundle- or block 

numbers as, e.g., T = 3B2 4s or T = 3*4+2.  

And, using proportionality to change the unit when two blocks need the same unit to be added 

on-top, or next-to in a combined unit called integral calculus. 

So, it seems as if early childhood education may introduce core mathematics as 

proportionality, solving equations, and integral calculus, thus leaving footnotes to later classes who 

can also benefit from the quantitative literature having the same two genres as the qualitative 

literature, fact and fiction.  

Thus, there is indeed an opportunity to design a core curriculum in mathematics for all 

students without splitting it up in tracks. But, only if the word- and the number-language are taught 

and learned in the same way by describing outside things and actions in words and in numbers coming 

from counting and adding. 

So, why not introduce a paradigm shift by teaching the number-language and the word-

language in the same way through its use, and not before, thus allowing both languages being taught 

in the space between the inside language and the outside world.  

Why keep on teaching the number-language in the space between the language and its meta-

language or grammar, which makes the number-language more abstract, leaving many educational 

challenges unsolved despite close to half a century of mathematics education research.  

Why not begin teaching children how to number, and stop teaching children about numbers 

and operation to be explained and learned before they can be applied to the outside world.  

Why not accept and develop children’s already existing ‘many-sense’, instead of teaching 

them the eight different aspects of what is called ‘number-sense’ described by Sayers and Andrews 

(2015) that after reviewing research in the Whole Number Arithmetic domain created a framework 

called foundational number sense (FoNS) with eight categories: number recognition, systematic 

counting, awareness of the relationship between number and quantity, quantity discrimination, an 

understanding of different representations of number, estimation, simple arithmetic competence and 

awareness of number patterns. 

And, why not simply let children talk about counting and adding constant and changing unit-

numbers and per-numbers using full sentences with a subject, a verb, and a predicate; instead of 

teaching them the eight different components of what is called ‘mathematical competencies’ (Niss, 

2003), thus reducing their numbers from eight to two: count and add (Tarp, 2002)?  

So maybe we should go back to the mother Humboldt university in Berlin and reflect on Karl 

Marx thesis 11 written on the staircase: ‘Die Philosophen haben die Welt nur verschieden 

interpretiert; es kömmt drauf an, sie zu verändern.’ (The philosophers have only interpreted the world, 

in various ways. The point, however, is to change it.)  
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Conclusion 

Let us return to the dream of the National Council of Teachers of Mathematics, to ‘provide 

our students with the best mathematics education possible, one that enables them to fulfil personal 

ambitions and career goals.’ Consequently, ‘everyone needs to be able to use mathematics in his or 

her personal life, in the workplace and in further study. All students deserve an opportunity to 

understand the power and beauty of mathematics.’ Furthermore, let us also accept what the council 

write about numbers: ‘Number pervades all areas of mathematics.’ 

So let us look for a curriculum that allows the students to understand and use and numbers, 

and see how far such a curriculum can carry all students without splitting into parallel tracks. 

Now, what does it mean to understand a number like 456?  

Is the ability to say that the three digits obey a place-value system where, from right to left, 

the first digits is ones, then tens, then hundred, then thousands, then, oops no-name unless we use the 

Chinese name wan, then no-name, then million, then no-name, then no-name, then billions or 

milliards, etc. Names and lack of names that give little meaning to children where only few understand 

why ten has its own name but not its own icon but has two digits as 10.  

On the other hand, is it the ability to understand that of course ten becomes 10 since it is short 

for ‘1 bundle and no singles’? And, that it would have been 20 had we counted in bundles of 5s 

instead as they do on an eastern abacus, where the two digits 10 then would be used for the bundle 

size 5.  

And that ten is just another word for bundle, and hundred for bundle-bundle, i.e., 2 times 

bundling; and thousand for bundle-bundle-bundle, i.e., or bundling 3 times, etc. where we never end 

in a situation with no name. Isn’t it both power and beauty to transform an unorganized total into a 

repeated bundling with the ability that only the decimal point moves if you change the number of 

bundling, T = 32.1 tens = 3.21 tentens, which is not the case with romans bundling where 3 tens is 6 

fives. The romans didn’t stick to bundling bundles since they bundled in both fives and tens and fifties 

but not in 5 5s, i.e., in 25s. Power and beauty comes from bundle bundles only. 

Consequently, to understand the number 456 is to see it, not as one number, but as three 

numberings of a total that has been bundled 0 times, bundled 1 times, bundled 2 times, etc. And to 

read the total as 4 bundled 2 times and 5 bundled once and 6 not bundled, or as 4 bundle-bundles and 

5 bundles and 6 unbundles singles. And to write the total as T = 4BB 5B 6. And to allow the same 

total to be recounted with an underload as T = 4BB 6B -4, or with an overload as T = 45B 6 = 4BB 

56; or as T = 45B -4 if combining overload and underload. 

This understanding allows an existing unorganized total become a number-language sentence 

connecting the outside subject T to an inside calculation, T = 4*B^2 + 5*B^1 + 6*B^0.  

Which again is an example, or specification, of an unspecified number-formula or polynomial 

T = a*x^2 + 5*x + 6. 

The power and beauty of the number-formula is manifold. It shows four ways to unite: power, 

multiplication, addition and next-to block addition also called integration. By including the units, we 

realize that there are only four types of numbers in the world as shown in the algebra-square above, 

constant and changing unit-numbers and per-numbers, united by precisely these four ways: addition 

and multiplication unite changing and constant unit-numbers, and integration and power unite 

changing and constant per-numbers. 

Furthermore, we observe that splitting a total into parts will reverse uniting parts into a total, 

meaning that all uniting operations have reverse operations: subtraction and division split a total into 

changing and constant unit-numbers; and differentiation and root & logarithm split a total in changing 

and constant per-numbers. This makes root a factor-finder, and logarithm a factor-counter, and 

differentiation a finder of per-numbers. 

And, if we use the word ‘equation’ for the need to split instead of unite, we observe that 

solving an equation means isolating the unknown by moving numbers to the opposite side with 

opposite calculation sign. Furthermore, using variables instead of digits we observe that the number-

formula contains the different formulas for constant change as shown above. 
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As to a non-constant change, there are two kinds. Predictable change roots calculus as shown 

by the algebra-square; and unpredictable change roots statistics to instead ‘post-dict’ numbers by a 

mean and a deviation to be used by probability to pre-dict a confidence interval for unpredictable 

numbers. 

Thus the ‘power and beauty’ of mathematics resides in the number-formula, as does the ability 

‘to use mathematics in students’ personal life, in the workplace and in further study’. So, designing a 

curriculum based upon the number-formula will ‘provide our students with the best mathematics 

education possible, one that enables them to fulfil personal ambitions and career goals.’ 

Furthermore, a number-formula based curriculum need not split into parallel curricula until 

after calculus, i.e., until after secondary education. 

So, one number-language curriculum for all is possible, as it is for the word-language. Thus, 

it is possible to allow all students to learn about the four ways to unite and the five ways to split a 

total.  

The most effective way to design a curriculum for all students is to adopt the curriculum 

designed refugee camp from the beginning since it accepts and develops the number-language 

children bring to school. Presenting figures and operations as icons, it bridges outside existence with 

inside essence. All four uniting methods occur in grade one when counting and recounting in different 

units, and when adding totals next-to and on-top. It respects the natural order of operations by letting 

division precede multiplication and subtraction, thus postponing addition until after counting, 

recounting and double-counting have taken place. It introduces the core recounting-formula 

expressing proportionality when changing units from the beginning, which allows a calculator to 

predict inside an outside recounting result. By connecting outside blocks with inside bundle-writing, 

geometry and algebra are introduced as Siamese twins never to part. Using flexible bundle-numbers 

connects inside decimals, fractions and negative numbers to unbundled leftovers placed next-to or 

on-top the outside block. It introduces solving equations when recounting from tens to icons. It 

introduces per-numbers and fractions when double counting in units that may be the same or different. 

And, it introduces trigonometry before geometry when double-counting sides in a block halved by its 

diagonal. 

Another option is to integrate calculus in a precalculus course by presenting integral calculus 

before differential calculus, which makes sense since until now inverse operations are always taught 

after the operation, subtraction after addition etc. Consequently, differential calculus should wait until 

after it has been motivated by integral calculus that is motivated by adding changing per-numbers in 

trade and physics, and by adding percent in statistical double-tables. 

In their publication, the National Council of Teachers of Mathematics writes ‘High school 

mathematics builds on the skills and understandings developed in the lower grades. (p. 19)’ If this 

has to be like that then high school education will suffer from lack of student skills and 

misunderstandings; and often teachers say that precalculus is the hardest course to teach because of 

a poor student knowledge background.  

So, we have to ask: Can we design a fresh-start curriculum for high school that integrates 

precalculus and calculus? And indeed, it is possible to go back to the power and beauty of the number-

formula as described above, and build a curriculum based upon the algebra-square. It gives an 

overview of the four kinds of numbers that exist in the outside world, and how to unite or split them. 

It shows a direct way to solve equations based upon the definitions of the reverse operations: move 

to opposite side with opposite calculation sign. 

Furthermore, it provides 2x2 guiding questions: how to unite or split into constant per-

numbers, as needed outside when facing change with a constant change-factor? And how to unite or 

split into changing per-numbers that are piecewise or locally constant, as needed outside when 

describing, e.g., the motion with a changing velocity of a falling object.  

As a reverse operation, differential calculus is a quick way to deliver the change-formula that 

solve the integration problem of adding the many area-strips coming from transforming locally 

constant per-numbers to unit-numbers by multiplication. Also, by providing change-formulas, 

differential calculus can extend the formulas for constant change coming from the number-formula. 
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An additional extension comes from combining constant change-number and change-percent to one 

of the most beautiful formulas in mathematics that is too often ignored, the saving-formula, A/a = 

R/r, a formula that is highly applicable in individual and social financial decisions. 

Working with constant and changing change also raises the question what to do about 

unpredictable change, which leads directly into statistics and probability. 

So, designing and implementing a fresh-start integrated precalculus and calculus curriculum 

will allow the National Council of Teachers of Mathematics to have their dream come through, so 

that in the future high schools can provide all students ‘with the best mathematics education possible, 

one that enables them to fulfil personal ambitions and career goals.’ 

As a number-language, mathematics is placed between its outside roots and its inside meta-

language or grammar. So, institutionalized education must make a choice: should the number-

language be learned through its grammar before being applied to outside descriptions; or should it as 

the word-language be learned through its use to describe the outside world? I short, shall mathematics 

education tach about numbers and operations and postpone applications till after this has been taught? 

Or shall mathematics education teach how to number and how to use operations to predict a 

numbering result thus teaching rooting instead of applications? 

Choosing the first ‘inside-inside’ option means connecting mathematics to its grammar as a 

‘meta-math’ defining concepts ‘from above’ as top-down examples from abstractions instead of ‘from 

below’ as bottom-up abstractions from examples. This is illustrated by the function concept that can 

be defined from above as an example of a set-product relation where first component identity implies 

second-component identity, or from below as a common name for ‘stand-by’ calculations containing 

unspecified numbers. 

Choosing the inside-inside ‘mathematics-as-metamatics’ option means teaching about 

numbers and operations before applying them. Here numbers never carry units but become names on 

a number-line; here numbers are added by counting on; and the other operations are presented as 

inside means to inside tasks: multiplication as repeated addition, power as repeated multiplication, 

subtraction as inverse addition, and division as inverse multiplication. Here fractions are numbers 

instead of operators needing numbers to become numbers. Here adding numbers and fractions without 

units leads to ‘mathe-matism’, true inside classrooms where 2+3 is 5 unconditionally, but seldom 

outside classrooms where counterexamples exist as, e.g., 2weeks + 3days is 17days or 2 3/7 weeks. 

Here geometry and algebra occur independently and before trigonometry. Here primary and lower 

secondary school focus on addition, subtraction, multiplication and division with power and root 

present as squaring and square roots, thus leaving general roots and logarithm and trigonometry to 

the different tracks in upper secondary school where differential calculus is introduced before integral 

calculus, if at all. 

Choosing the inside-outside ‘mathematics-as-manymath’ option means to teach digits as icons 

with as many strokes as they represent. And to also teach operations as icons, rooted in the counting 

process where division wipes away bundles to be stacked by multiplication, again to be removed by 

subtraction to identify unbundled singles. This will allow giving a final description of the total using 

a full sentence with a subject, a verb and a predicate predicted by the recount-formula T = (T/B)*B, 

e.g., T = 2Bundle 1 3s = 2.1 3s = 2 1/3 3s thus including decimal numbers and fractions in a natural 

number. Here a double description of Many as an outside block and an inside bundle-number allows 

outside geometry and inside algebra to be united from the start. Once counted, totals can be recounted. 

First in the same unit to create overloads and underloads introducing negative numbers. Then between 

icon- and ten-bundles introducing the multiplication table and solving equations. Then double-

counting in two units creates per-numbers becoming fractions with like units. Finally, recounting the 

sides in a block halved by its diagonal will root trigonometry before geometry, that integrated with 

algebra can predict intersection points. Then follows addition and reversed addition in its two 

versions, on-top or next-to. On-top addition calls for recounting the totals in the same unit, thus 

rooting proportionality. And next-to addition means adding blocks as areas, thus rooting integral 

calculus. Reversed addition roots equations and differential calculus. Per-numbers are added as 

operators including the units, thus rooting integral calculus, later defined as adding locally constant 
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per-numbers. Thus, this option means that the core of mathematics is learned in primary school 

allowing ample of time in secondary school to enjoy the number-language literature by examining 

existing models or producing models yourself. And it means that only one curriculum is needed for 

all students as in the word-language. Furthermore, the root and use of calculus to add changing per-

numbers is easily introduced at the precalculus level when adding ingredients with different per-

numbers and when adding categories in statistics with different percent. 

And, the fact that the difficulty by adding many numbers disappears when the numbers can 

be written as change-numbers since adding up any number of small changes total just one change 

from the start- to the end-number. Which of course motivates differential calculus. 

Consequently, there is no need for a parallel curriculum to the traditional, since everybody 

can learn calculus in a communicative way. Of course, one additional optional course may be given 

to look at all the theoretical footnotes. 

To offer a completely different kind of mathematics as graph theory and game theory and 

voting theory risks depriving the students of the understanding that mathematics is put in the world 

as a number-language that use operations to predict the result of counting, recounting and double-

counting. A language that only needs four operations to unite parts into a total, and only five 

operations to split a total into parts. 

Without calculus in the final high school curriculum, students may not understand how to add 

per-numbers and might add them as unit-numbers instead of as areas; and this will close many ‘doors 

to productive futures’ as the US National Council of Teachers of Mathematics talks about. 
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A New Curriculum - But for Which of the 2x2 Kinds of Mathematics 
Education  

An Essay on Observations and Reflections at the ICMI Study 24 Curriculum Conference 

As part of institutionalized education, mathematics needs a curriculum describing goals and means. 

There are however two kinds of mathematics: essence-based and existence-based; and there are two 

kinds of education: multi-year mandatory lines and half-year self-chosen blocks. Thus, there are 2x2 

kinds of mathematics education to choose from before deciding on a specific curriculum; and if 

changing, shall the curriculum stay within the actual kind or change to a different kind? The absence 

of federal states from the conference suggests that curricula should change from national multi-year 

macro-curricula to local half-year micro-curricula; and maybe change to existence-based 

mathematics. 

Coherence and Relevance in the School Mathematics Curriculum  

The International Commission on Mathematical Instruction, ICMI, has named its 24th study 

‘School mathematics Curriculum Reforms: Challenges, Changes and Opportunities’. Its discussion 

document has 5 themes among which theme B, ‘Analysing school mathematics curriculum for 

coherence and relevance’ says that ‘All mathematics curricula set out the goals expected to be 

achieved in learning through the teaching of mathematics; and embed particular values, which may 

be explicit or implicit.’ 

So, to analyze we use the verb ‘cohere’ and the predicate ‘relevant’ when asking: ‘to what 

does this curriculum cohere and to what is it relevant?’ As to the meaning of the words ‘cohere’ and 

‘relevant’ we may ask dictionaries. 

The Oxford Dictionaries (en.oxforddictionaries.com) writes that ‘to cohere’ means ‘to form a 

unified whole’ with its origin coming from Latin ‘cohaerere’, from co- ‘together’ + haerere ‘to stick’; 

and that ‘relevant’ means being ‘closely connected or appropriate to what is being done or 

considered.’ We see, that where ‘cohere’ relates to states, ‘relevant’ relates to changes or processes 

taking place. 

The Merriam-Webster dictionary (merriam-webster.com) seems to agree upon these 

meanings. It writes that ‘to cohere’ means ‘to hold together firmly as parts of the same mass’. As to 

synonyms for cohere, it lists: ‘accord, agree, answer, check, chord, coincide, comport, conform, 

consist, correspond, dovetail, fit, go, harmonize, jibe, rhyme (also rime), sort, square, tally.’ And as 

to antonyms, it lists: ‘differ (from), disagree (with).’ 

In the same dictionary, the word ‘relevant’ means ‘having significant and demonstrable 

bearing on the matter at hand’. As to synonyms for relevant, it lists: ‘applicable, apposite, apropos, 

germane, material, pertinent, pointed, relative.’ And as to antonyms, it lists: ‘extraneous, immaterial, 

impertinent, inapplicable, inapposite, irrelative, irrelevant, pointless.’ 

If we accept the verb ‘apply’ as having a meaning close to the predicate ‘relevant’, we can 

rephrase the above analysis question using verbs only: ‘to what does this curriculum cohere and 

apply?’ 

Seeing education metaphorically as bridging an individual start level for skills and knowledge 

to a common end level described by goals and values, we may now give a first definition of an ideal 

curriculum: ‘To apply to a learning process as relevant and useable, a curriculum coheres to the start 

and end levels for skills and knowledge.’ 

This definition involves obvious choices, and surprising choices also if actualizing the ancient 

Greek sophist warning against choice masked as nature. The five main curriculum choices are:  

How to make the bridge cohere with the individual start levels in a class?  

How to make the end level cohere to goals and values expressed by the society?  

How to make the end level cohere to goals and values expressed by the learners?  

How to make the bridge cohere to previous and following bridges? 
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How to make the bridge (more) passable?  

Then specific choices for mathematics education follow these general choices. 

Goals and Values Expressed by the Society  

In her plenary address about the ‘OECD 2030 Learning Framework’, Taguma shared a vision:  

The members of the OECD Education 2030 Working Group are committed to helping every learner 

develop as a whole person, fulfil his or her potential and help shape a shared future built on the well-

being of individuals, communities and the planet. (..) And in an era characterised by a new explosion 

of scientific knowledge and a growing array of complex societal problems, it is appropriate that 

curricula should continue to evolve, perhaps in radical ways (p. 10).  

Talking about learner agency, Taguma said: 

Future-ready students need to exercise agency, in their own education and throughout life. (..) To help 

enable agency, educators must not only recognise learners’ individuality, (..) Two factors, in particular, 

help learners enable agency. The first is a personalised learning environment that supports and 

motivates each student to nurture his or her passions, make connections between different learning 

experiences and opportunities, and design their own learning projects and processes in collaboration 

with others. The second is building a solid foundation: literacy and numeracy remain crucial. (p. 11) 

By emphasizing learner’s individual potentials, personalised learning environment and own 

learning projects and processes, Taguma seems to indicate that flexible half-year micro-curricula may 

cohere better with learners’ future needs than rigid multi-year macro-curricula. As to specifics, 

numeracy is mentioned as one of the two parts of a solid foundation helping learners enable agency. 

Different Kinds of Numeracy 

Numeracy, however, is not that well defined. Oxford Dictionaries and Merriam-Webster agree 

on saying ‘ability to understand and work with numbers’; whereas the private organization National 

Numeracy (nationalnumeracy.org.uk) says ‘By numeracy we mean the ability to use mathematics in 

everyday life’.  

The wish to show usage was also part of the Kilpatrick address, describing mathematics as 

bipolar: 

I want to stress that bipolarity because I think that’s an important quality of the school curriculum and 

every teacher and every country has to deal with: how much attention do we give to the purer side of 

mathematics. The New Math thought that it should be entire but that didn’t work really as well as 

people thought. So how much attention do we give to the pure part of mathematics and how much to 

the applications and how much do we engage together. Because it turns out if the applications are well-

chosen and can be understood by the children then that helps them move toward the purer parts of the 

field. (p. 20) 

After discussing some problems caused by applications in the curriculum, Kilpatrick 

concludes:  

If we stick with pure mathematics, with no application, what students cannot see, ‘when will I ever 

use this?’, it’s not surprising that they don’t go onto take more mathematics. So, I think for self-

preservation, mathematicians and mathematics educators should work on the question of: how do we 

orchestrate the curriculum so that applications play a good role? There is even is even a problem with 

the word applications, because it implies first you do the mathematics, then you apply it. And actually, 

it can go the other way. (p. 22)  

So, discussing what came first, the hen or the egg, applications or mathematics, makes it 

problematic to define numeracy as the ability to apply mathematics since it gives mathematics a 

primacy and a monopoly as a prerequisite for numeracy. At the plenary afterwards discussion, I 

suggested using the word ‘re-rooting’ instead of ‘applying’ to indicate that from the beginning, 
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mathematics was rooted in the outside world as shown by the original meanings of geometry and 

algebra: ‘to measure earth’ in Greek and ‘to reunite’ in Arabic.  

Mathematics Through History 

In ancient Greece, the Pythagoreans chose the word mathematics, meaning knowledge in 

Greek, as a common label for their four knowledge areas: geometry, arithmetic, music and astronomy, 

seen by the Greeks as knowledge about Many in space, Many by itself, Many in time, and Many in 

space and time. Together they formed the ‘quadrivium’ recommended by Plato as a general 

curriculum together with ‘trivium’ consisting of grammar, logic and rhetoric. 

Today, mathematics typically is a common name for geometry and algebra both indicating 

the outside existence rooting them: in Greek, geometry means to measure earth, and in Arabic, algebra 

means to reunite. 

Although born as existence-based, mathematics never developed as a natural science about 

Many in time and space since both Greek and Roman numbers both missed the advantage of only 

bundling singles and bundles, as did the Hindu-Arabic numbers coming to Europe in the Renaissance. 

Instead, the Greeks developed an axiomatic deductive Euclidean geometry well suited to practice 

logic. 

So, for centuries, mathematics was a science about essence, ‘essence-based math’. Which was 

even intensified when around 1900, the abstract concept ‘set’ was spreading all over mathematics, 

and finally reached the education level as the ‘New Math’, recommended by Bruner (1962) arguing 

that a subject should have the same form at the educational and scientific level. 

Here a wish for exactness and unity created a essence-based ‘setcentric’ (Derrida, 1991) 

‘meta-math’ as a collection of ‘well-proven’ statements about ‘well-defined’ concepts, defined top-

down as examples from abstractions instead of bottom-up as abstractions from examples. But Russell 

showed that the self-referential liar paradox ‘this sentence is false’, being false if true and true if false, 

reappears in the set of sets not belonging to itself, where a set belongs only if it does not: If M = 

A│AA then MM  MM. The Zermelo-Fraenkel set-theory avoids self-reference by not 

distinguishing between sets and elements, thus becoming meaningless by not separating abstract 

concepts from concrete examples.  

Setcentrism thus changed classical grounded existence-based ‘many-math’ into a self-

referring essence-based ‘meta-matism’, a mixture of meta-math and ‘mathe-matism’ true inside but 

seldom outside a classroom where adding numbers without units as ‘1 + 2 IS 3’ meets counter-

examples as, e.g., 1week + 2days is 9days.  

The introduction of the setcentric New Math created different reactions. Inside the United 

States it was quickly abandoned with a ‘back-to-basics’ movement. Outside it was implemented at 

teacher education, and in schools where it gradually softened. However, it never retook its original 

form or name, despite, in contrast to ‘mathematics’, ‘reckon’ is an action-word better suited to the 

general aim of education, to teach humans to master the outside world through appropriate actions. 

Different Kinds of Mathematics  

So, a curriculum must choose between an existence-based and essence-based mathematics as 

illustrated by an example from McCallum’s plenary talk. After noting that ‘a particularly knotty area 

in mathematics curriculum is the progression from fractions to ratios to proportional relationships’ 

(p. 4), McCallum asked the audience: ‘What is the difference between 5/3 and 5÷3’.  

 Essence-based mathematics will say that 5/3 is a number on the number-line reached by 

taking 5 steps of the length coming from dividing the unit in 3 parts; and that 5÷3 means 5 items 

shared between 3. 

In its modern version, essence-based mathematics will say that 5/3 is a rational number 

defined as an equivalence class in the product set of integers, created by the equivalence relation (a,b) 

eq. (c,d) if cross-multiplication holds, axd = bxc; and, with 1/3 as the inverse element to 3 under 

multiplication, 5÷3 should be written as 5x1/3, i.e., the as the solution to the equation 3xu = 5, found 



32 

by applying and thus legitimizing abstract algebra and group theory; thus finally saying goodbye to 

the Renaissance use of a vertical line to separate addends from subtrahends, and a horizontal line to 

separate multipliers from divisors. 

Existence-based mathematics (Tarp, 2018) sees essence-based setcentric mathematics as 

meta-matism hiding the original Greek meaning of mathematics as a science about Many. In this 

‘Many-math’, 5/3 is a per-number coming from double-counting in different units (5$/3kg), 

becoming a fraction with like units (5$/3$ = 5/3). Here per-numbers and fractions are not numbers 

but operators needing a number to become a number (5/3 of 3 is 5, 5/3 of 6 is 10); and 5÷3 means 5 

counted in 3s occurring in the ‘recount-formula’ recounting a total T in bundles of 3s as T = (T/3)x3, 

saying ‘from T, T/3 times, 3 can be taken away’. This gives flexible numbers: T = 5 = 1B2 3s = 1.2 

3s = 1 2/3 3s = 2B-1 3s = 2.-1 3s, introduced in grade one where bundle-counting and re-counting in 

another unit precedes adding, and where recounting from tens to icons, T = 2.4 tens = ? 6s, leads to 

the equation T = ux6 = 24 = (24/6)x6 solved by recounting. In existence-based mathematics, per-

numbers, fractions, ratios and proportionality melt together since double-counting in two units gives 

per-numbers as ratios, becoming fractions with like units. And here proportionality means changing 

units using the recount-formula to recount in the per-number: With 5$/3kg, ‘how much for 20$?’ is 

found by re-counting 20 in 5s: T = 20$ = (20/5)x5$ = (20/5)x3kg = 12 kg. Likewise, if asking ‘how 

much for 15 kg?’ 

Different Kinds of Education 

As to education, from secondary school there is a choice between multi-year lines and half-

year blocks. At the discussion after the Kilpatrick plenary session, I made a comment about these two 

educational systems, which mas a lady from the United States say I was misinforming since in the 

states Calculus required a full year block. Together with other comments in the break, this made me 

realize that internationally there is little awareness of these two different kinds of educational systems. 

So here is another example of what the Greek sophists warned against, choice masked as nature. 

Typically, unitary states have one multi-year curriculum for primary and lower secondary 

school, followed by parallel multi-year curricula for upper secondary and tertiary education. Whereas, 

by definition, federal states have parallel curricula, or even half-year curricula from secondary school 

as in the United States.  

At the conference, the almost total absence of federal states as Germany, Canada, the United 

States and Russia seems to indicate that the problems reside with multi-year national curricula, 

becoming rigid traditions difficult to change. While federal competition or half-year blocks creates 

flexibility through an opportunity to try out different curricula. 

Moreover, as a social institution involving individual constraint, education calls for 

sociological perspectives. Seeing the Enlightenment Century as rooting education, it is interesting to 

study its forms in its two Enlightenment republics, the North American from 1776 and the French 

from 1789. In North America, education enlightens children about their outside world, and enlightens 

teenagers about their inside individual talent, uncovered and developed through self-chosen half-year 

blocks with teachers teaching only one subject in their own classrooms.  

To protect its republic against its German speaking neighbors, France created elite schools, 

criticized today for exerting hidden patronization. Bourdieu thus calls education ‘symbolic violence’, 

and Foucault points out that a school is really a ‘pris-pital’ mixing power techniques from a prison 

and a hospital, thus raising two ethical issues: On which ethical ground do we force children and 

teenagers to return to the same room, hour after hour, day after day, week after week, month after 

month for several years? On which ethical ground do we force children and teenagers to be cured 

from self-referring diagnoses as, e.g., the purpose of mathematics education is to cure mathematics 

ignorance? Issues, the first Enlightenment republic avoids by offering teenagers self-chosen half-year 

blocks; and by teaching, not mathematics, but algebra and geometry referring to the outside world by 

their original meanings. 
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Different Kinds of Competences  

As to competences, new to many curricula, there are at least three alternatives to choose 

among. The European Union recommends two basic competences, acquiring and applying, when 

saying that ‘Mathematical competence is the ability to develop and apply mathematical thinking in 

order to solve a range of problems in everyday situations. Building on a sound mastery of numeracy, 

the emphasis is on process and activity, as well as knowledge.’ 

At the conference two alternative notions of competences were presented. In his plenary 

address, Niss recommended a matrix with 8 competences per concept (p. 73). In his paper, Tarp (pp. 

317-324) acknowledged that 8 competences may be needed if the goal of mathematics education is 

to learn present essence-based setcentric university mathematics; but if the goal is to learn to master 

Many with existence-based mathematics, then only two competences are needed: counting and 

adding, rooting a twin curriculum teaching counting, recounting in different units and double-

counting before adding. 

Making the Learning Road More Passable  

Once a curriculum is chosen, the next question is to make its bridge between the start and end 

levels for skills and knowledge more passable. Here didactics and pedagogy come in; didactics as the 

captain choosing the way from the start to the end, typically presented as a textbook leaving it to 

pedagogy, the lieutenants, to take the learners through the different stages.  

The didactical choices must answer general questions from grand theory. Thus, philosophy 

will ask: shall the curriculum follow the existentialist recommendation, that existence precedes 

essence? And psychology will ask: shall the curriculum follow Vygotsky mediating institutionalized 

essence, or Piaget arranging learning meetings with what exists in the outside world? And sociology 

will ask: on which ethical grounds are children and teenagers retained to be cured by institutionalized 

education? 

Colonizing or Decolonizing Curricula 

The conference contained two plenary panels, the first with contributors from France, China, 

The Philippines and Denmark, almost all from the northern hemisphere; the second with contributors 

from Chile, Australia, Lebanon and South Africa, almost all from the southern hemisphere. Where 

the first panel talked more about solutions, the second panel talked more about problems. 

In the first panel, France and Denmark represented some of the world’s most centralized states 

with war-time educational systems dating back to the Napoleon era, which in France created elite-

schools to protect the young republic from the Germans, and in Germany created the Humboldt 

Bildung schools to end the French occupation by mediating nationalism, and to sort out the population 

elite for jobs as civil servants in the new central administration; both just replacing the blood-nobility 

with a knowledge-nobility as noted by Bourdieu. The Bildung system latter spread to most of Europe.  

Not surprisingly, both countries see university mathematics as the goal of mathematics 

education (‘mathematics is what mathematicians do’), despite the obvious self-reference avoided by 

instead formulating the goal as, e.g., learning numerical competence, mastery of Many or number-

language. Seeing mathematics as the goal, makes mathematics education an example of a goal 

displacement (Bauman) where a monopoly transforms a means into a goal. A monopoly that makes 

setcentric mathematics an example of what Habermas and Derrida would call a ‘center-periphery 

colonization’, to be decentered and decolonized by deconstruction. 
Artigue from France thus advocated an anthropological theory of the didactic, ATD, (p. 43-

44), with a ‘didactic transposition process’ containing four parts: scholarly knowledge (institutions 

producing and using the knowledge), knowledge to be taught (educational system, ‘noosphere’), 

taught knowledge (classroom), and learned available knowledge (community of study). 

The theory of didactic transposition developed in the early 1980s to overcome the limitation 

of the prevalent vision at the time, seeing in the development of taught knowledge a simple process 



34 

of elementarization of scholarly knowledge (Chevallard 1985). Beyond the well-known succession 

offered by this theory, which goes from the reference knowledge to the knowledge actually taught in 

classrooms (..), ecological concepts such as those of niche, habitat and trophic chain (Artaud 1997) 

are also essential in it.  

Niss from Denmark described the Danish ‘KOM Project’ leading to eight mathematical 

competencies per mathematical topic (pp. 71-72). 

The KOM Project took its point of departure in the need for creating and adopting a general 

conceptualisation of mathematics that goes across and beyond educational levels and institutions. (..) 

We therefore decided to base our work on an attempt to define and characterise mathematical 

competence in an overarching sense that would pertain to and make sense in any mathematical context. 

Focusing - as a consequence of this approach - first and foremost on the enactment of mathematics 

means attributing, at first, a secondary role to mathematical content. We then came up with the 

following definition of mathematical competence: Possessing mathematical competence – mastering 

mathematics – is an individual’s capability and readiness to act appropriately, and in a knowledge-

based manner, in situations and contexts that involve actual or potential mathematical challenges of 

any kind. In order to identify and characterise the fundamental constituents in mathematical 

competence, we introduced the notion of mathematical competencies: A mathematical competency is 

an individual’s capability and readiness to act appropriately, and in a knowledge-based manner, in 

situations and contexts that involve a certain kind of mathematical challenge. 

Some of the consequences by being colonized by setcentrism was described in the second 

panel. 

In his paper ‘School Mathematics Reform in South Africa: A Curriculum for All and by All?’ 

Volmink from South Africa Volmink writes (pp. 106-107):  

At the same time the educational measurement industry both locally and internationally has, with its 

narrow focus, taken the attention away from the things that matter and has led to a traditional approach 

of raising the knowledge level. South Africa performs very poorly on the TIMSS study. In the 2015 

study South Africa was ranked 38th out of 39 countries at Grade 9 level for mathematics and 47th out 

of 48 countries for Grade 5 level numeracy. Also, in the Southern and Eastern Africa Consortium for 

Monitoring Educational Quality (SACMEQ), South Africa was placed 9th out of the 15 countries 

participating in Mathematics and Science – and these are countries which spend less on education and 

are not as wealthy as we are. South Africa has now developed its own Annual National Assessment 

(ANA) tests for Grades 3, 6 and 9. In the ANA of 2011 Grade 3 learners scored an average of 35% for 

literacy and 28% for numeracy while Grade 6 learners averaged 28% for literacy and 30% for 

numeracy. 

After thanking for the opportunity to participate in a cooperative effort on the search of better 

education for boys, girls and young people around the world, Oteiza from Chile talked about ‘The 

Gap Factor’ creating social and economic differences. A slide with the distribution of raw scores at 

PSU mathematics by type of school roughly showed that out of 80 points, the median scores were 40 

and 20 for private and public schools respectively. In his paper, Oteiza writes (pp. 81-83): 

Results, in national tests, show that students attending public schools, close to de 85% of school 

population, are not fulfilling those standards. How does mathematical school curriculum contribute to 

this gap? How might mathematical curriculum be a factor in the reduction of these differences? (..) 

There is tremendous and extremely valuable talent diversity. Can we justify the existence of only one 

curriculum and only one way to evaluate it through standardized tests? (..) There is a fundamental role 

played by researchers, and research and development centers and institutions. (..) How do the questions 

that originate in the classroom reach a research center or a graduate program? ‘Publish or perish’ has 

led our researchers to publish in prestigious international journals, but, are the problems and local 

questions addressed by those publications?’ 

The Gap Factor is also addressed in a paper by Hoyos from Mexico (pp. 258-259): 

The PISA 2009 had 6 performance levels (from level 1 to level 6). In the global mathematics scale, 

level 6 is the highest and level 1 is the lowest. (..) It is to notice that, in PISA 2009, 21.8% of Mexican 

students do not reach level 1, and, in PISA 2015, the percentage of the same level is a little bit higher 
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(25.6%). In other words, the percentage of Mexican students that in PISA 2009 are below level 2 (, 

i.e., attaining the level 1 or zero) was 51%, and this percentage is 57% in PISA 2015, evidencing then 

an increment of Mexican students in the poor levels of performance. According to the INEE, students 

at levels 1 or cero are susceptible to experiment serious difficulties in using mathematics and benefiting 

from new educational opportunities throughout its life. Therefore, the challenges of an adequate 

educational attention to this population are huge, even more if it is also considered that approximately 

another fourth of the total Mexican population (33.3 million) are children under 15 years of age, a 

population in priority of attention’. 

As a comment to Volminks remark ‘Another reason for its lack of efficacy was the sense of 

scepticism and even distrust about the notion of People's Mathematics as a poor substitute for the 

‘real mathematics’’ (p. 104), and inspired by the sociological Centre–Periphery Model for colonizing, 

by post-colonial studies, and by Habermas’ notion of rationalization and colonization of the lifeworld 

by the instrumental rationality of bureaucracies, I formulated the following question in the afterwards 

discussion: ‘As former colonies you might ask: Has colonizing stopped, or is it still taking place? Is 

there an outside central mathematics that is still colonizing the mind? What happens to what could be 

called local math, street math, ethno-math or the child’s own math?’  

Conclusion and Recommendations 

Designing a curriculum for mathematics education involves several choices. First pre-, 

present and existence-based mathematics together with multi-year lines and half-year blocks 

constitute 3x2 different kinds of mathematics education. Combined with three different ways of 

seeing competences, this offers a total of 18 different ways in which to perform mathematics 

education at each of the three educational levels, primary and secondary and tertiary, which may even 

be divided into parts. 

Once chosen, institutional rigidity may hinder curriculum changes. So, to avoid the ethical 

issues of forcing cures from self-referring diagnoses upon children and teenagers in need of guidance 

instead of cures, the absence of participants from federal states might be taken as an advice to replace 

the national multi-year macro-curriculum with regional half-year micro-curricula. At the same time, 

adopting the post version of setcentric mathematics will make the curriculum coherent with the 

mastery of Many children bring to school, and relevant to learning the quantitative competence and 

numeracy desired by society. 

And, as Derrida says in an essay called ‘Ellipsis’ in ‘Writing and Difference’: ‘Why would 

one mourn for the center? Is not the center, the absence of play and difference, another name for 

death?’  

Postscript: Many-Math, an Existence-based Mathematics for All 

As existence-based mathematics, Many-math, can provide numeracy for all by celebrating the 

simplicity of mathematics occurring when recounting the ten fingers in bundles of 3s: 

T = ten = 1B7 3s = 2B4 3s = 3B1 3s = 4B-2 3s.  

Or, if seeing 3 bundles of 3s as 1 bundle of bundles,  

T = ten = 1BB0B1 3s = 1*B^2 + 0*B + 1 3s, or  

T = ten = 1BB1B-2 3s = 1*B^2 + 1*B – 2 3s. 

This number-formula shows that a number is really a multi-numbering of singles, bundles, 

bundles of bundles etc. represented geometrically by parallel block-numbers with units. Also, it 

shows the four ways to unite: on-top addition, multiplication, power and next-to addition, also called 

integration. Which are precisely the four ways to unite constant and changing unit- and per-numbers 

numbers into totals as seen by including the units; each with a reverse way to split totals.  

Thus, addition and multiplication unite changing and constant unit-numbers, and integration 

and power unite changing and constant per-numbers. We might call this beautiful simplicity ‘the 
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Algebra Square’, also showing that equations are solved by moving to the opposite side with opposite 

signs. 

Operations unite/ 

split Totals in 
Changing Constant 

Unit-numbers 

m, s, kg, $ 

T = a + n 

T – n = a 

T = a*n 
𝑇

𝑛
 = a 

Per-numbers 

m/s, $/kg, $/100$ = % 

T =  f dx 
𝑑𝑇

𝑑𝑥
 = f 

T = 𝑎𝑏 

√𝑇
𝑏

= a         loga(T) = b 

Figure 01. The ‘algebra-square’ shows the four ways to unite or split numbers. 

An unbundled single can be placed on-top of the block counted in 3s as T = 1 = 1/3 3s, or 

next-to the block as a block of its own written as T = 1 = .1 3s Writing T = ten = 3 1/3 3s = 3.1 3s = 

4.-2 3s thus introduces fractions and decimals and negative numbers together with counting. 

The importance of bundling as the unit is emphasized by counting: 1, 2, 3, 4, 5, 6 or bundle 

less 4, 7 or B-3, 8 or B-2, 9 or B-1, ten or 1 bundle naught, 1B1, …, 1B5, 2B-4, 2B-3, 2B-2, 2B-1, 

2B naught.  

This resonates with ‘Viking-counting’: 1, 2, 3, 4, hand, and1, and2, and3, less2, less1, half, 

1left, 2left. Here ‘1left’ and ‘2left’ still exist as ‘eleven’ and ‘twelve’, and ‘half’ when saying ‘half-

tree’, ‘half-four’ and ‘half-five’ instead of 50, 70 and 90 in Danish, counting in scores; as did Lincoln 

in his Gettysburg address: ‘Four scores and seven years ago …’ 

Counting means wiping away bundles (called division iconized as a broom) to be stacked 

(called multiplication iconized as a lift) to be removed to find unbundled singles (called subtraction 

iconized as a horizontal trace). Thus, counting means postponing adding and introducing the 

operations in the opposite order of the tradition, and with new meanings: 7/3 means 7 counted in 3s, 

2x3 means stacking 3s 2 times. Addition has two forms, on-top needing recounting to make the units 

like, and next-to adding areas, i.e., integral calculus. Reversed they create equations and differential 

calculus. 

The recount-formula T = (T/B)*B appears all over mathematics and science as proportionality 

or linearity formula:  

• Change unit, T = (T/B)*B, e.g., T = 8 = (8/2)*2 = 4*2 = 4 2s 

• Proportionality, $ = ($/kg)*kg = price*kg 

• Trigonometry, a = (a/c)*c = sinA*c, a = (a/b)*b = tanA*b, b = (b/c)*c = cosA*c 

• STEM-formulas, meter = (meter/sec)*sec = speed*sec, kg = (kg/m^3)*m^3 = density*m^3 

• Coordinate geometry, y = (y/x)*x = m*x 

• Differential calculus, dy = (dy/dx)*dx = y’ * dx 

The number-formula also contains the formulas for constant change:  

T = b*x (proportional) 

T = b*x + c (linear) 

T = a*x^n (elastic) 

T = a*n^x (exponential) 

T = a*x^2 + b*x + c (accelerated) 

If not constant, numbers change: constant change roots pre-calculus, predictable change roots 

calculus, and unpredictable change roots statistics, ‘post-dicting’ what we cannot be ‘pre-dicted’. 

The General Curriculum Choices of Existence-based Mathematics  

Making the curriculum bridge cohere with the individual start levels in a class is obtained by 
always beginning with the number-formula, and with recounting tens in icons less than ten, e.g., T = 

4.2 tens = ? 7s, or u*7 = 42 = (42/7)*7, thus solving equations by moving to opposite side with 

opposite sign. And by always using full number-language sentences with a subject, a verb and a 
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predicate as in the word language, e.g., T = 2*3. This also makes the bridge cohere to previous and 

following bridges. 

Making the end level cohere to goals and values expressed by the society and by the learners 

is obtained by choosing mastery as the end goal, not of the inside self-referring setcentric construction 

of contemporary university mathematics, but of the outside universal physical reality, Many.  

Making the bridge passable is obtained by choosing Piagetian psychology instead of 

Vygotskyan.  

Flexible Bundle-Numbers may make Teachers Follow 

Changing a curriculum raises the question: will the teachers follow? Here, seeing the 

advantage of flexible bundle-numbers may make teachers interested in learning more about existence-

based mathematics: 

Typically, division creates problems to students, e.g., 336/7. With flexible numbers a total of 

336 can be recounted with an overload as  

T = 336 = 33B6 = 28B56, so 336/7 = 28B56 /7 = 4B8 = 48; or with an underload as  

T = 336 = 33B6 = 35B-14, so 336/7 = 35B-14 /7 = 5B-2 = 48.  

Flexible numbers ease all operations: 

T = 48*7 = 4B8*7 = 28B56 = 33B6 = 336 

T = 92 – 28 = 9B2 – 2B8 = 7B-6 = 6B4 = 64 

T = 54 + 28 = 5B4 + 2B8 = 7B12 = 8B2 = 82 

To learn more about flexible numbers, a group of teachers can go to the 

MATHeCADEMY.net designed to teach teachers to teach MatheMatics as ManyMatics, a natural 

science about Many, to watch some of its YouTube videos. Next, the group can try out the ‘Free 1day 

Skype Teacher Seminar: Cure Math Dislike by ReCounting’ where, in the morning, a power point 

presentation ‘Curing Math Dislike’ is watched and discussed locally, and at a Skype conference with 

an instructor. After lunch the group tries out a ‘BundleCount before you Add booklet’ to experience 

proportionality and calculus and solving equations as golden learning opportunities in bundle-

counting and re-counting and next-to addition. Then another Skype conference follows after the 

coffee break.  

To learn more, a group of eight teachers can take a one-year in-service distance education 

course in the CATS approach to mathematics, Count & Add in Time & Space. C1, A1, T1 and S1 is 

for primary school, and C2, A2, T2 and S2 is for secondary school. For modelling, there is a study 

unit in quantitative literature.  

The course is organized as PYRAMIDeDUCATION where the 8 teachers form 2 teams of 4, 

choosing 3 pairs and 2 instructors by turn. An external coach helps the instructors instructing the rest 

of their team. Each pair works together to solve count&add problems and routine problems; and to 

carry out an educational task to be reported in an essay rich on observations of examples of cognition, 

both re-cognition and new cognition, i.e., both assimilation and accommodation. The coach assists 

the instructors in correcting the count&add assignments. In a pair, each teacher corrects the other’s 

routine-assignment. Each pair is the opponent on the essay of another pair. Each teacher pays for the 

education by coaching a new group of 8 teachers.  

The material mediates learning by experimenting with the subject in number-language 

sentences, i.e., the total T. Thus, the material is self-instructing, saying ‘When in doubt, ask the 

subject, not the instructor’. 

The material for primary and secondary school has a short question-and-answer format. The 

question could be: ‘How to count Many? How to recount 8 in 3s? How to count in standard bundles?’ 

The corresponding answers would be:  

‘By bundling and stacking the total T, predicted by  

T = (T/B)*B. So, T = 8 = (8/3)*3 = 2*3 + 2 = 2*3 + 2/3*3 = 2 2/3*3 = 2.2 3s = 3.-1 3s.  

Bundling bundles gives multiple blocks, a polynomial:  

T = 456 = 4BundleBundle + 5Bundle + 6 = 4*B^2 + 5*B + 6*1.’ 
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A Twin Curriculum Since Contemporary Mathematics May Block the Road 
to its Educational Goal, Mastery of Many 

Mathematics education research still leaves many issues unsolved after half a century. Since it refers 

primarily to local theory, we may ask if grand theory may be helpful. Here philosophy suggests 

respecting and developing the epistemological mastery of Many children bring to school instead of 

forcing ontological university mathematics upon them. And sociology warns against the goal 

displacement created by seeing contemporary institutionalized mathematics as the goal needing eight 

competences to be learned, instead of aiming at its outside root, mastery of Many, needing only two 

competences, to count and to unite, described and implemented through a guiding twin curriculum.  

Poor PISA Performance Despite Fifty Years of Research 

Being highly useful to the outside world, mathematics is a core part of institutionalized 

education. Consequently, research in math education has grown as witnessed by the International 
Congress on Mathematics Education taking place each 4 years since 1969. However, despite 

increased research and funding, the former model country Sweden has seen its PISA result decrease 

from 2003 to significantly below the OECD average in 2012, causing OECD (2015) to write the 

report ‘Improving Schools in Sweden’. Likewise, math dislike seems to be widespread in high 

performing countries also. With mathematics and education as social institutions, grand theory may 

explain this ‘irrelevance paradox’, the apparent negative correlation between research and 

performance. 

Grand Theory  

Ancient Greece saw two forms of knowledge, ‘sophy’. To the sophists, knowing nature from 

choice would prevent patronization by choice presented as nature. To the philosophers, choice was 

an illusion since the physical is but examples of metaphysical forms only visible to the philosophers 

educated at Plato's Academy. Christianity eagerly took over metaphysical patronage and changed the 

academies into monasteries. The sophist skepticism was revived by Brahe and Newton, insisting that 

knowledge about nature comes from laboratory observations, not from library books (Russell, 1945).  

Newton’s discovery of a non-metaphysical changing will lead to the Enlightenment period: 

When falling bodies follow their own will, humans can do likewise and replace patronage with 

democracy. Two republics arose, in the United States and in France. The US still has its first Republic, 

France its fifth, since its German-speaking neighbors tried to overthrow the French Republic again 

and again. 

In North America, the sophist warning against hidden patronization lives on in American 

pragmatism and symbolic interactionism; and in Grounded Theory, the method of natural research 

resonating with Piaget’s principles of natural learning. In France, skepticism towards our four 

fundamental institutions, words and sentences and cures and schools, is formulated in the 

poststructural thinking of Derrida, Lyotard, Foucault and Bourdieu warning against institutionalized 

categories, correctness, diagnosed cures, and education; all may hide patronizing choices presented 

as nature (Lyotard, 1984). 

Within philosophy itself, the Enlightenment created existentialism (Marino, 2004) described 

by Sartre as holding that ‘existence precedes essence’, exemplified by the Heidegger-warning: In a 

sentence, trust the subject, it exists; doubt the predicate, it is essence coming from a verdict or gossip. 

The Enlightenment also gave birth to sociology. Here Weber was the first to theorize the 

increasing goal-oriented rationalization that dis-enchants the world and creates an iron cage if carried 

to wide. Mills (1959) sees imagination as the core of sociology. Bauman (1990) agrees by saying that 

sociological thinking “renders flexible again the world hitherto oppressive in its apparent fixity; it 

shows it as a world which could be different from what it is now” (p. 16). But he also formulates a 

warning (p. 84): “The ideal model of action subjected to rationality as the supreme criterion contains 
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an inherent danger of another deviation from that purpose - the danger of so-called goal displacement. 

(..) The survival of the organization, however useless it may have become in the light of its original 

end, becomes the purpose in its own right”. Which may lead to ‘the banality of evil’ (Arendt, 1963). 

As to what we say about the world, Foucault (1995) focuses on discourses about humans that, 

if labeled scientific, establish a ‘truth regime’. In the first part of his work, he shows how a discourse 

disciplines itself by only accepting comments to already accepted comments. In the second part he 

shows how a discourse disciplines also its subject by locking humans up in a predicate prison of 

abnormalities from which they can only escape by accepting the diagnose and cure offered by the 

‘pastoral power’ of the truth regime. Foucault thus sees a school as a ‘pris-pital’ mixing the power 

techniques of a prison and a hospital: the ‘pati-mates’ must return to their cell daily and accept the 

diagnose ‘un-educated’ to be cured by, of course, education as defined by the ruling truth regime.  

Mathematics, Stable until the Arrival of SET 

In ancient Greece, the Pythagoreans chose the word mathematics, meaning knowledge in 

Greek, as a common label for their four knowledge areas: geometry, arithmetic, music and astronomy 

(Freudenthal, 1973), seen by the Greeks as knowledge about Many in space, Many by itself, Many in 

time, and Many in space and time. Together they formed the ‘quadrivium’ recommended by Plato as 

a general curriculum together with ‘trivium’ consisting of grammar, logic and rhetoric. 

With astronomy and music as independent areas, mathematics became a common label for 

the two remaining activities, geometry and algebra, both rooted in the physical fact Many through 

their original meanings, ‘to measure earth’ in Greek and ‘to reunite’ in Arabic. And in Europe, 

Germanic countries taught ‘reckoning’ in primary school and ‘arithmetic’ and ‘geometry’ in the lower 

secondary school until about 50 years ago when they all were replaced by the ‘New Mathematics’. 

Here a wish for exactness and unity created a SET-derived ‘meta-matics’ as a collection of 

‘well-proven’ statements about ‘well-defined’ concepts, defined top-down as examples from 

abstractions instead of bottom-up as abstractions from examples. But Russell showed that the self-

referential liar paradox ‘this sentence is false’, being false if true and true if false, reappears in the set 

of sets not belonging to itself, where a set belongs only if it does not: If M = A│AA then MM 

 MM. The Zermelo-Fraenkel set-theory avoids self-reference by not distinguishing between sets 

and elements, thus becoming meaningless by not separating abstract concepts from concrete 

examples.  

SET thus transformed classical grounded ‘many-matics’ into today’s self-referring ‘meta-

matism’, a mixture of meta-matics and ‘mathe-matism’ true inside but seldom outside a classroom 

where adding numbers without units as ‘1 + 2 IS 3’ meets counter-examples as e.g. 1week + 2days is 

9days.  

Proportionality Illustrates the Variety of Mastery of Many and of Quantitative Competence  

Proportionality is rooted in questions as “2kg costs 5$, what does 7kg cost; and what does 12$ 

buy?”  

Europe used the ‘Regula de Tri’ (rule of three) until around 1900: arrange the four numbers 

with alternating units and the unknown at last. Now, from behind, first multiply, then divide. So first 

we ask, Q1: ‘2kg cost 5$, 7kg cost ?$’ to get to the answer (7*5/2)$ = 17.5$. Then we ask, Q2: ‘5$ 

buys 2kg, 12$ buys ?kg’ to get to the answer (12*2)/5$ = 4.8kg.  

Then, two new methods appeared, ‘find the unit’, and cross multiplication in an equation 

expressing like proportions or ratios: 

Q1: 1kg costs 5/2$, so 7kg cost 7*(5/2) = 17.5$. Q2: 1$ buys 2/5kg, so 12$ buys 12*(2/5) = 

4.8kg. Q1: 2/5 = 7/x, so 2*x = 7*5, x = (7*5)/2 = 17.5. Q2: 2/5 = x/12, so 5*x = 12*2, x = (12*2)/5 = 

4.8. 

SET chose modeling with linear functions to show the relevance of abstract algebra’s group 

theory: Let us define a linear function f(x) = c*x from the set of kg-numbers to the set of $-numbers, 

having as domain DM = {xR I x>0}. Knowing that f(2) = 5, we set up the equation f(2) = c*2 = 5 to 
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be solved by multiplying with the inverse element to 2 on both sides and applying the associative 

law: c*2 = 5, (c*2)*½ = 5*½, c*(2*½) = 5/2, c*1 = 5/2, c = 5/2. With f(x) = 5/2*x, the inverse function 

is f-1(x) = 2/5*x. So with 7kg, f(7) = 5/2*7 = 17.5$; and with 12$, f-1(12) = 2/5*12 = 4.8kg. 

In the future, we simply ‘re-count’ in the ‘per-number’ 2kg/5$ coming from ‘double-counting’ 

the total T. Q1: T = 7kg = (7/2)*2kg = (7/2)*5$ = 17.5$; Q2: T = 12$ = (12/5)*5$ = (12/5)*2kg = 

4.8kg. 

Grand Theory Looks at Mathematics Education 

Philosophically, we can ask if Many should be seen ontologically, what it is in itself; or 

epistemologically, how we perceive and verbalize it. University mathematics holds that Many should 

be treated as cardinality that is linear by its ability to always absorb one more. However, in human 

number-language, Many is a union of blocks coming from counting singles, bundles, bundles of 

bundles etc., T = 345 = 3*BB+4*B+5*1, resonating with what children bring to school, e.g. T = 2 5s. 

Likewise, we can ask: in a sentence what is more important, that subject or what we say about 

it? University mathematics holds that both are important if well-defined and well-proven; and both 

should be mediated according to Vygotskian psychology. Existentialism holds that existence precedes 

essence, and Heidegger even warns against predicates as possible gossip. Consequently, learning 

should come from openly meeting the subject, Many, according to Piagetian psychology. 

Sociologically, a Weberian viewpoint would ask if SET is a rationalization of Many gone too 

far leaving Many dis-enchanted and the learners in an iron cage. A Baumanian viewpoint would 

suggest that, by monopolizing the road to mastery of Many, contemporary university mathematics 

has created a goal displacement. Institutions are means, not goals. As an institution, mathematics is a 

means, so the word ‘mathematics’ must go from goal descriptions. Thus, to cure we must be sure the 

diagnose is not self-referring. Seeing education as a pris-pital, a Foucaultian viewpoint would ask, 

first which structure to choose, European line-organization forcing a return to the same cell after each 

hour, day and month for several years; or the North American block-organization changing cell each 

hour, and changing the daily schedule twice a year? Next, as prisoners of a ‘the goal of math education 

is to learn math’ discourse and truth regime, how can we look for different means to the outside goal, 

mastery of Many, e.g. by examining and developing the existing mastery children bring to school?  

Meeting Many, Children Bundle in Block-Numbers to Count and Share 

How to master Many can be learned from preschool children. Asked “How old next time?”, 

a 3year old will say “Four” and show 4 fingers; but will react strongly to 4 fingers held together 2 by 

2, ‘That is not four, that is two twos’, thus describing what exists, and with units: bundles of 2s, and 

2 of them. 

Children also use block-numbers when talking about Lego bricks as ‘2 3s’ or ‘3 4s’. When 

asked “How many 3s when united?” they typically say ‘5 3s and 3 extra’; and when asked “How 

many 4s?” they may say ‘5 4s less 2’; and, placing them next-to each other, they typically say ‘2 7s 

and 3 extra’.  

Children have fun recounting 7 sticks in 2s in various ways, as 1 2s &5, 2 2s &3, 3 2s &1, 4 

2s less 1, 1 4s &3, etc. And children don’t mind writing a total of 7 using ‘bundle-writing’ as T = 7 = 

1B5 = 2B3 = 3B1 = 4B1; or even as 1BB3 or 1BB1B1. Also, children love to count in 3s, 4s, and in 

hands.  

Sharing 9 cakes, 4 children take one by turn saying they take 1 of each 4. Taking away 4s 

roots division as counting in 4s; and with 1 left they often say “let’s count it as 4”. Thus 4 preschool 

children typically share by taking away 4s from 9, and by taking away 1 per 4, and by taking 1 of 4 

parts. And they smile when seeing that entering ‘9/4’ allows a calculator to predict the sharing result 

as 2 1/4; and when seeing that entering ‘2*5/3’ will predict the result of sharing 2 5s between 3 

children.  
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Children thus master sharing, taking parts and splitting into parts before division and 

counting- and splitting-fractions is taught; which they may like to learn before being forced to add 

without units.  

So why not develop instead of rejecting the core mastery of Many that children bring to 

school?  

A Typical Contemporary Mathematics Curriculum 

Typically, the core of a curriculum is how to operate on specified and unspecified numbers. 

Digits are given directly as symbols without letting children discover them as icons with as many 

strokes or sticks as they represent. Numbers are given as digits respecting a place value system 

without letting children discover the thrill of bundling, counting both singles and bundles and bundles 

of bundles. Seldom 0 is included as 01 and 02 in the counting sequence to show the importance of 

bundling. Never children are told that eleven and twelve comes from the Vikings counting ‘(ten and) 

1 left’, ‘(ten and) 2 left’. Never children are asked to use full number-language sentences, T = 2 5s, 

including both a subject, a verb and a predicate with a unit. Never children are asked to describe 

numbers after ten as 1.4 tens with a decimal point and including the unit. Renaming 17 as 2.-3 tens 

and 24 as 1B14 tens is not allowed. Adding without units always precedes both bundling iconized by 

division, stacking iconized by multiplication, and removing stacks to look for unbundled singles 

iconized by subtraction. In short, children never experience the enchantment of counting, recounting 

and double-counting Many before adding. So, to re-enchant Many will be an overall goal of a twin 

curriculum in mastery of Many through developing the children’s existing mastery and quantitative 

competence. 

A Question Guided Counting Curriculum 

The question guided re-enchantment curriculum in counting could be named ‘Mastering 

Many by counting, recounting and double-counting’. The design is inspired by Tarp (2018). It accepts 

that while eight competencies might be needed to learn university mathematics (Niss, 2003), only 

two are needed to master Many (Tarp, 2002), counting and uniting, motivating a twin curriculum. 

The corresponding pre-service or in-service teacher education can be found at the 

MATHeCADEMY.net. Remedial curricula for classes stuck in contemporary mathematics can be 

found in Tarp (2017). 

Q01, icon-making: “The digit 5 seems to be an icon with five sticks. Does this apply to all 

digits?” Here the learning opportunity is that we can change many ones to one icon with as many 

sticks or strokes as it represents if written in a less sloppy way. Follow-up activities could be 

rearranging four dolls as one 4-icon, five cars as one 5-icon, etc.; followed by rearranging sticks on a 

table or on a paper; and by using a folding ruler to construct the ten digits as icons.  

Q02, counting sequences: “How to count fingers?” Here the learning opportunity is that five 

fingers can also be counted “01, 02, 03, 04, Hand” to include the bundle; and ten fingers as “01, 02, 

Hand less2, Hand-1, Hand, Hand&1, H&2, 2H-2, 2H-1, 2H”. Follow-up activities could be counting 

things. 

Q03, icon-counting: “How to count fingers by bundling?” Here the learning opportunity is 

that five fingers can be bundle-counted in pairs or triplets allowing both an overload and an underload; 

and reported in a number-language sentence with subject, verb and predicate: T = 5 = 1Bundle3 2s = 

2B1 2s = 3B-1 2s = 1BB1 2s, called an ‘inside bundle-number’ describing the ‘outside block-number’. 

A western abacus shows this in ‘outside geometry space-mode’ with the 2 2s on the second and third 

bar and 1 on the first bar; or in ‘inside algebra time-mode’ with 2 on the second bar and 1 on the first 

bar. Turning over a two- or three-dimensional block or splitting it in two shows its commutativity, 

associativity and distributivity: T = 2*3 = 3*2; T = 2*(3*4) = (2*3)*4; T = (2+3)*4 = 2*4 + 3*4. 

Q04, calculator-prediction: “How can a calculator predict a counting result?” Here the 

learning opportunity is to see the division sign as an icon for a broom wiping away bundles: 5/2 means 

‘from 5, wipe away bundles of 2s’. The calculator says ‘2.some’, thus predicting it can be done 2 
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times. Now the multiplication sign iconizes a lift stacking the bundles into a block. Finally, the 

subtraction sign iconizes the trace left when dragging away the block to look for unbundled singles. 

By showing ‘5-2*2 = 1’ the calculator indirectly predicts that a total of 5 can be recounted as 2B1 2s. 

An additional learning opportunity is to write and use the ‘recount-formula’ T = (T/B)*B saying 

“From T, T/B times B can be taken away.” This proportionality formula occurs all over mathematics 

and science. Follow-up activities could be counting cents: 7 2s is how many fives and tens? 8 5s is 

how many tens? 

Q05, unbundled as decimals, fractions or negative numbers: “Where to put the unbundled 

singles?” Here the learning opportunity is to see that with blocks, the unbundled occur in three ways. 

Next-to the block as a block of its own, written as T = 7 = 2.1 3s, where a decimal point separates the 

bundles from the singles. Or on-top as a part of the bundle, written as T = 7 = 2 1/3 3s = 3.-2 3s 

counting the singles in 3s, or counting what is needed for an extra bundle. Counting in tens, the outside 

block 4 tens & 7 can be described inside as T = 4.7 tens = 4 7/10 tens = 5.-3 tens, or 47 if leaving out 

the unit. 

Q06, prime or foldable units: “Which blocks can be folded?” Here the learning opportunity is 

to examine the stability of a block. The block T = 2 4s = 2*4 has 4 as the unit. Turning over gives T 

= 4*2, now with 2 as the unit. Here 4 can be folded in another unit as 2 2s, whereas 2 cannot be folded 

(1 is not a real unit since a bundle of bundles stays as 1). Thus, we call 2 a ‘prime unit’ and 4 a 

‘foldable unit’, 4 = 2 2s. So, a block of 3 2s cannot be folded, whereas a block of 3 4s can: T = 3 4s 

= 3 * (2*2) = (3*2) * 2. A number is called even if it can be written with 2 as the unit, else odd.  

Q07, finding units: “What are possible units in T = 12?”. Here the learning opportunity is that 

units come from factorizing in prime units, T = 12 = 2*2*3. Follow-up activities could be other 

examples. 

Q08, recounting in another unit: “How to change a unit?” Here the learning opportunity is to 

observe how the recount-formula changes the unit. Asking e.g. T = 3 4s = ? 5s, the recount-formula 

will say T = 3 4s = (3*4/5) 5s. Entering 3*4/5, the answer ‘2.some’ shows that a stack of 2 5s can be 

taken away. Entering 3*4 – 2*5, the answer ‘2’ shows that 3 4s can be recounted in 5s as 2B2 5s or 

2.2 5s.  

Q09, recounting from tens to icons: “How to change unit from tens to icons?” Here the 

learning opportunity is that asking ‘T = 2.4 tens = 24 = ? 8s’ can be formulated as an equation using 

the letter u for the unknown number, u*8 = 24. This is easily solved by recounting 24 in 8s as 24 = 

(24/8)*8 so that the unknown number is u = 24/8 attained by moving 8 to the opposite side with the 

opposite sign. Follow-up activities could be other examples of recounting from tens to icons. 

Q10, recounting from icons to tens: “How to change unit from icons to tens?” Here the 

learning opportunity is that if asking ‘T = 3 7s = ? tens’, the recount-formula cannot be used since the 

calculator has no ten-button. However, it is programmed to give the answer directly by using 

multiplication alone: T = 3 7s = 3*7 = 21 = 2.1 tens, only it leaves out the unit and misplaces the 

decimal point. An additional learning opportunity uses ‘less-numbers’, geometrically on an abacus, 

or algebraically with brackets: T = 3*7 = 3 * (ten less 3) = 3 * ten less 3*3 = 3ten less 9 = 3ten less 

(ten less1) = 2ten less less 1 = 2ten & 1 = 21. Follow-up activities could be other examples of 

recounting from icons to tens. 

Q11, double-counting in two units: “How to double-count in two different units?” Here the 

learning opportunity is to observe how double-counting in two physical units creates ‘per-numbers’ 

as e.g. 2$ per 3kg, or 2$/3kg. To answer questions we just recount in the per-number: Asking ‘6$ = 

?kg’ we recount 6 in 2s: T = 6$ = (6/2)*2$ = (6/2)*3kg = 9kg. And vice versa, asking ‘?$ = 12kg’, 

the answer is T = 12kg = (12/3)*3kg = (12/3)*2$ = 8$. Follow-up activities could be numerous other 

examples of double-counting in two different units since per-numbers and proportionality are core 

concepts. 

Q12, double-counting in the same unit: “How to double-count in the same unit?” Here the 

learning opportunity is that when double-counted in the same unit, per-numbers take the form of 

fractions, 3$ per 5$ = 3/5; or percentages, 3 per hundred = 3/100 = 3%. Thus, to find a fraction or a 

percentage of a total, again we just recount in the per-number. Also, we observe that per-numbers and 
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fractions are not numbers, but operators needing a number to become a number. Follow-up activities 

could be other examples of double-counting in the same unit since fractions and percentages are core 

concepts. 

Q13, recounting the sides in a block. “How to recount the sides of a block halved by its 

diagonal?” Here, in a block with base b, height a, and diagonal c, mutual recounting creates the 

trigonometric per-numbers: a = (a/c)*c = sinA*c; b = (b/c)*c = cosA*c; a = (a/b)*b = tanA*b. Thus, 

rotating a line can be described by a per-number a/b, or as tanA per 1, allowing angles to be found 

from per-numbers. Follow-up activities could be other blocks e.g. from a folding ruler. 

Q14, double-counting in STEM (Science, Technology, Engineering, Math) multiplication 

formulas with per-numbers coming from double-counting. Examples: kg = (kg/cubic-meter)*cubic-

meter = density*cubic-meter; force = (force/square-meter) * square-meter = pressure * square-meter; 

meter = (meter/sec)*sec = velocity*sec; energy = (energy/sec)*sec = Watt*sec; energy = (energy/kg) 

* kg = heat * kg; gram = (gram/mole) * mole = molar mass * mole;  momentum = ( 

momentum/sec) * sec = force * sec;   energy = ( energy/ meter) * meter = force * meter = work; 

energy/sec = (energy/charge)*(charge/sec) or Watt = Volt*Amp; dollar = (dollar/hour)*hour = 

wage*hour. 

Q15, navigating. “Avoid the rocks on a squared paper”. Four rocks are placed on a squared 

paper. A journey begins in the midpoint. Two dices tell the horizontal and vertical change, where odd 

numbers are negative. How many throws before hitting a rock? Predict and measure the angles on the 

journey. 

A Question Guided Uniting Curriculum 

The question guided re-enchantment curriculum in uniting could be named ‘Mastering Many 

by uniting and splitting constant and changing unit-numbers and per-numbers’. 

A general bundle-formula T = a*x^2 + b*x + c is called a polynomial. It shows the four ways 

to unite: addition, multiplication, repeated multiplication or power, and block-addition or integration. 

The tradition teaches addition and multiplication together with their reverse operations subtraction 

and division in primary school; and power and integration together with their reverse operations 

factor-finding (root), factor-counting (logarithm) and per-number-finding (differentiation) in 

secondary school. The formula also includes the formulas for constant change: proportional, linear, 

exponential, power and accelerated. Including the units, we see there can be only four ways to unite 

numbers: addition and multiplication unite changing and constant unit-numbers, and integration and 

power unite changing and constant per-numbers. We might call this beautiful simplicity ‘the algebra 

square’. 

Q21, next-to addition: “With T1 = 2 3s and T2 = 4 5s, what is T1+T2 when added next-to as 

8s?” Here the learning opportunity is that next-to addition geometrically means adding by areas, so 

multiplication precedes addition. Algebraically, the recount-formula predicts the result. Next-to 

addition is called integral calculus. Follow-up activities could be other examples of next-to addition. 

Q22, reversed next-to addition: “If T1 = 2 3s and T2 add next-to as T = 4 7s, what is T2?” 

Here the learning opportunity is that when finding the answer by removing the initial block and 

recounting the rest in 3s, subtraction precedes division, which is natural as reversed integration, also 

called differential calculus. Follow-up activities could be other examples of reversed next-to addition. 

Q23, on-top addition: “With T1 = 2 3s and T2 = 4 5s, what is T1+T2 when added on-top as 

3s; and as 5s?” Here the learning opportunity is that on-top addition means changing units by using 

the recount-formula. Thus, on-top addition may apply proportionality; an overload is removed by 

recounting in the same unit. Follow-up activities could be other examples of on-top addition. 

Q24, reversed on-top addition: “If T1 = 2 3s and T2 as some 5s add to T = 4 5s, what is T2?” 

Here the learning opportunity is that when finding the answer by removing the initial block and 

recounting the rest in 5s, subtraction precedes division, again called differential calculus. An 

underload is removed by recounting. Follow-up activities could be other examples of reversed on-top 

addition. 
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Q25, adding tens: “With T1 = 23 and T2 = 48, what is T1+T2 when added as tens?” Again, 

recounting removes an overload: T1+T2 = 23 + 48 = 2B3 + 4B8 = 6B11 = 7B1 = 71; or T = 236 + 487 

= 2BB3B6 + 4BB8B7 = 6BB11B13 = 6BB12B3 = 7BB2B3 = 723.  

Q26, subtracting tens: “If T1 = 23 and T2 add to T = 71, what is T2?” Again, recounting 

removes an underload: T2 = 71 – 23 = 7B1 – 2B3 = 5B-2 = 4B8 = 48; or T2 = 956 – 487 = 9BB5B6 – 

4BB8B7 = 5BB-3B-1 = 4BB7B-1 = 4BB6B9 = 469. Since T = 19 = 2.-1 tens, T2 = 19 -(-1) = 2.-1 tens 

take away -1 = 2 tens = 20 = 19+1, showing that -(-1) = +1.  

Q27, multiplying tens: “What is 7 43s recounted in tens?” Here the learning opportunity is 

that also multiplication may create overloads: T = 7*43 = 7*4B3 = 28B21 = 30B1 = 301; or 27*43 = 

2B7*4B3 =8BB+6B+28B+21 =8BB34B21 =8BB36B1 = 11BB6B1 = 1161, solved geometrically in a 

2x2 block.  

Q28, dividing tens: “What is 348 recounted in 6s?” Here the learning opportunity is that 

recounting a total with overload often eases division: T = 348 /6 = 3BB4B8 /6 = 34B8 /6 = 30B48 /6 

= 5B8 = 58.  

Q29, adding per-numbers: “2kg of 3$/kg + 4kg of 5$/kg = 6kg of what?” Here the learning 

opportunity is that the unit-numbers 2 and 4 add directly whereas the per-numbers 3 and 5 add by 

areas since they must first transform to unit-numbers by multiplication, creating the areas. Here, the 

per-numbers are piecewise constant. Asking 2 seconds of 4m/s increasing constantly to 5m/s leads to 

finding the area in a ‘locally constant’ (continuous) situation defining constancy by epsilon and delta. 

Q30, subtracting per-numbers: “2kg of 3$/kg + 4kg of what = 6kg of 5$/kg?” Here the learning 

opportunity is that unit-numbers 6 and 2 subtract directly whereas the per-numbers 5 and 3 subtract 

by areas since they must first transform into unit-number by multiplication, creating the areas. In a 

‘locally constant’ situation, subtracting per-numbers is called differential calculus.  

Q31, finding common units: “Only add with like units, so how to add T = 4ab^2 + 6abc?”. 

Here units come from factorizing: T = 2*2*a*b*b + 2*3*a*b*c = 2*b*(2*a*b) + 3*c*(2*a*b) = 

2b+3c 2abs.  

Conclusion 

A curriculum wants to develop brains, and colonizing wants to develop countries. De-

colonizing accepts that maybe countries and brains can develop themselves if helped by options 

instead of directions from developed countries and brains. Some prefer a direction-giving multi-year 

macro-curriculum; others prefer option-giving half-year micro-curricula. Some prefer a curriculum 

to be a cure prescribing mathematics competencies and literacy; others prefer developing the existing 

quantitative competence and numeracy, defined by dictionaries as the ability to use numbers and 

operations in everyday life, thus silencing the word ‘mathematics’ to avoid a hidden continuing 

colonization. In the transition period between colonizing and decolonizing brains, grand theory has 

an advice to the ‘irrelevance paradox’ of mathematics education research: accept the brain’s own 

epistemology to avoid a goal displacement blocking the road to its educational goal, mastery of Many. 
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