Meeting Many we Bundle-COUNT before we ADD

Flexible Bundle-Numbers Develop the Child's Innate Mastery of Many

A Paradigm Shift

from LineNumbers without to BundleNumbers with Units

Allan.Tarp@MATHeCADEMY.net, Denmark, 12.21

The Goal of Math Education: to master Math or to master Many?

mastery of Many, as developed before school?

Grand Theory Questions to Mathematics Education

• Sociology asks

Does mathematics education suffer from a goal displacement? What is the goal: to master **Many**, or to master **math**?

• Philosophy asks

What to teach: existence or essence

Is it ethical to teach students if they already know

• Psychology asks

How to teach: guided interaction with **existence**, or mediated **essence**?

Why Teach Children if they Already Know?

Suns.

With education curing un-educatedness, we ask: To CURE, be SURE

- 1. The diagnosed is not already cured
- 2. The diagnose is not self-referring: *teach math* to learn math

Core Questions:

- What Mastery of Many does the child have already?
- What could be a <u>ChildCenteredCurriculum</u> in Mastery of Many?

How do Children Master Many? Ask a 3-year-old: How old Next Time?

The answer is 4, showing 4 fingers But, reacting strongly to 4 fingers held together 2 by 2: "That is not four, that is two twos"

<u>Observation 01</u>: Inside, children see what **exists** outside, bundles of **2s**, *in space*; and 2 of them, *in time*. So, they use, not line-, but **bundle**-numbers with **units**

<u>Observation 02</u>: The child uses a **full number-language sentence** as in the wordlanguage with a SUBJECT, a VERB, and a PREDICATE:

"That is two twos", shortened to the formula "T = 2 **2s**"

Adults also use Bundle-Counting with Units to Master Many in Time and Space

Meeting Many in **time** (repetition), and in **space** (extension), we ask: "How Many here", and "How Many in Total?", or Simply "*T* = ?"

To bring Many from time to space,

- We tally:
- And bundle-count in polynomials:

- = 3 **ten-ten** 4 **ten** 5
- = 3 Bundle-Bundle 4 Bundle 5
- $= 3 \times B \times B + 4 \times B + 5 \times 1$

So, digits are not numbers, but operators, needing digits to become numbers.

What is True Always, and What is True Sometimes

Is this true	Always?	Sometimes?
2 x 3 = 6	2x3 is 2 3s that can always be recounted as 6 1s	
2 + 3 = 5		Only with the same unit 2xweek + 3xweek = 5xweek 2xweeks + 3xdays = 17xdays
$\frac{1}{2} + \frac{2}{3} = \frac{3}{5}$		1 of 2 apples + 2 of 3 apples gives 3 of 5 apples, and not 7 of 6
$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$		Only if taken of the same total

Inside & Outside the **NoUnitMath** GreenHouse Same Question - Different Answers

INSIDE

1+2 = 3

MatheMatism True inside, but seldom outside the

NoUnitMath GreenHouse

OUTSIDE

1+2 = ? *depends on the units* 1m + 2m = 3m 1km + 2mm = 1km 1week + 2days = 9days

A science must give valid statements so MatheMatism is no science

2 Math Paradigms: Without and With Units

- an inside 'no-unit-math' number-line paradigm, where 1+2 = 3 always, and
- an outside 'unit-math' bundle-number paradigm, where 1+2 = ? needs units

The 'unit-math' paradigm builds on the philosophy EXISTENTIALISM where **EXISTENCE** precedes **ESSENCE**

So 'unit-math' describes **EXISTENCE**, and neglects institutionalized **ESSENCE**

Unit-math is relevant for

- early childhood education
- adult education, and migrant education
- 'bringing back brains' from special education

1, 2, 3, ... is a String of Names as Monday, Tuesday, Wednesday

With eyes closed, learning a string of number-names by rote is like learning other strings of names of weekdays, months, etc.

But, in a stack of 3 5s, the 5-bundle exists in space,

and 3, the number of 5s, exists in time.

So, we should include both the 'time-number' and the 'space-number' and the bundle-unit when counting existing things:

0 bundle 1, 0B2, ..., 0B9, 0Bten or 1B0, 1B1,..., 1B9, 1Bten or 2B0,

Teaching 1+2 = 3 without units is falsified by 1week + 2days = 9 days.

Addition is only meaningful with like units according to the distributive law: T = 0B1 + 0B2 = 0B3.

Bundle-Counting becomes Flexible with Overloads and Underloads

Counting 10 fingers in 5s, we include the unit to describe what exists 0B1, 0B2, 0B3, 0B4, 0B5, 0B6, 0B7, 2Bundle less2, 2B-1, 2B0

<u>Overload</u>	<u>Underload</u>
1 <i>B</i> 0, 1 <i>B</i> 1, 1 <i>B</i> 2,	1 <i>B</i> 3,1 <i>B</i> 4

Counting in tens with <u>flexible bundle-numbers</u>:

T = 38 = 3Bundle8 = 2Bundle18 = 4Bundle less2, or short

T = 38 = 3*B*8 = 2*B*18 = 4*B*-2, and

```
T = 347 = 3BB4B7 = 2BB14B7 = 1BB23B17, or
```

T = 347 = 3*BB*4*B*7 = 3*BB*5*B*-**3** = 4*BB*-**6***B*7

Danish Vikings said: 'en-levn' (elleven, one left) 'twe-levn' (twelve, two left) 'twende-ti' (twenty)

Bundle-Counting Fingers in 3s

Bundle-Counting in 2s, 4 is a bundle-bundle, and 8 is a bundle-bundle-bundle

This can be shown with Lego bricks having different colors: a green 2-brick is *B* a blue 4-brick is *BB* a red 8-brick is *BBB*

How to see the Unbundled Counted in tens?"

- Counting in tens, a Total of 2 **tens** & 3 can be described T = 23 if leaving out the unit and the decimal point,
- or as:

Bundle-Counting in tens Including Units, 100 becomes a bundle-bundle, BB

1BB0B0	1BB0B1	1BB0B2	1BB0B3	1BB0B4	1BB0B5	1BB0B6	1BB0B7	1BB0B8	1BB0B9	1BB0B10
10B0	10B1	10B2	10B3	1084	10B5	1086	1087	1088	1089	10810
9B0	9B1	9B2	9B3	9B4	9B5	9B6	9B7	9B8	9B9	9B10
8B0	8B1	8B2	8B3	8B4	8B5	8B6	8B7	8B8	8B9	8B10
7B0	7B1	7B2	7B3	7B4	7B5	7B6	7B7	7B8	7B9	7B10
6B0	6B1	6B2	6B3	6B4	6B5	6B6	6B7	6B8	6B9	6B10
5B0	5B1	5B2	5B3	5B4	5B5	5B6	5B7	5B8	5B9	5B10
4B0	4B1	4B2	4B3	4B4	4B5	4B6	4B7	4B8	4B9	4B10
3B0	3B1	3B2	3B3	3B4	3B5	3B6	3B7	3B8	3B9	
2B0	2B1	2B2	2B3	2B4	2B5	2B6	2B7	2B8	2B9	2810
1B0	1B1	1B2	1B3	1B4	1B5	1B6	1B7	1B8	1B9	1810
0B0	0B1	0B2	0B3	0B4	0B5	0B6	0B7	0B8	0B9	0B10

10 = bundle = B 100 = bundle-bundle = BB = B^2 1000 = bundle-bundle-bundle = BBB = B^3

11

Flexible Bundle-Numbers Ease Operations. Counting in tens, *T* = 74 = 7*B*4 = 6*B*14 = 8*B*-6

Digits as Icons: $||| \rightarrow ||| \rightarrow | \rightarrow | \rightarrow |$

Children love making number-icons of cars, dolls, spoons, sticks. Changing four ones to one fours creates a 4-icon with four sticks. An icon contains as many sticks as it represents, if written less sloppy. Once created, icons become **UNITS** when counting in bundles, as kids do.

Divide & Multiply & Subtract & Add may be 'de-modeled' as Counting-Icons

- From 9 **PUSH** away **4s** we write <u>9/4</u> <u>iconizing</u> a broom, called *division*.
- 2 times **LIFT** the **4s** to a stack we write <u>2x4</u> <u>iconizing</u> a lift called *multiplication*.
- "From 9 PULL away 2 4s to find un-bundled" we write
 - <u>9-2x4</u> iconizing a rope, called *subtraction*.
- UNITING next-to or on-top we write B+C

iconizing the two directions, called addition.

Calculators Predict Counting Results Bundle-Counting a Total of 9 in **2s**

Acting	Predicting		
9	From 9, 9/2 times, push away 2s	9/2	4.5
bundled in 2 with 1 unbundled	From 9, pull away 4 2s , leaves 1 Calculator prediction : T = 9 = 4 B 1 2s	9-4x2	1
4x2 with 1 unbundled 4.1B 4½B 5B-1 2s	 The unbundled are placed on- separated by a decimal point, 4.1 2s counted in bundles as 1 = (1/2) x 2 g counting what is missing in a full bur So, inside decimals, fractions, and ne rooted in how we outside see the ur 	top iving 4½ B 2s ndle, 5 B-1 2s egatives are nbundled.	

9/2 9 – 4x2

4.some

1

T = (T/B)xBShift unit from **1s** to **2s**: 8 = ? **2s** 8 = 4 **2s** = 4x2 **Bundle-counting:** 8/2 = 4 Predict by a calculation: $8 = (8/2)x^2$ **Recount result: T** = (**T**/**B**)**xB** " *T* contains **T**/**B** *Bs*" **Recount-Formula:** Shifting unit v = k * x $u_{\rm X}2 = 8$ Proportionality = (8/2)x2 Equations $\Delta y = (\Delta y / \Delta x) * \Delta x = m * \Delta x$ Linearity = 8/2 U Local linearity dy = (dy/dx) * dx = y' * dxa = (**a/b**) * b = **tanA** * b Trigonometry Move: OPPOSITE Side & Sign \$ = (\$/kg) * kg = price * kg Trade meter = (meter/sec) * sec **STEM** = speed * sec

Shifting Units Creates a **Recount-Formula**

2010

8 = (8/2)x2

The Recount Formula Solves Equations

Asking "How many 2s in 8" gives the equation " $u \ge 2 = 8$ ", that is solved by recounting 8 in 2s:

$$u \ge 2 = 8 = (8/2) \ge 2$$

 $u = 8/2$

To solve equations, we MOVE to OPPOSITE side with OPPOSITE calculation sign So we don't need the balancing method of abstract algebra

<i>u</i> + 2 = 8	<i>u</i> x 2 = 8	<i>u</i> ^8 = 2	2^ <i>u</i> = 8
<i>u</i> = 8 – 2	<i>u</i> = 8/2	$u = \sqrt[8]{2}$	$u = \log_2(8)$

FACTOR-finding ROOT FACTOR-counting LOG

Remember Units when Solving Equations

OppoSite Side	Remember Units	
2 + <i>u</i> = 8 = (8-2) + 2	$2 \times u = 8 = (8/2) \times 2$	2 + 3 x u = 14
		2x1 + 3x u = 14 = 14 - 2 + 2
u = 8-2	u = 8/2	<i>u</i> = (14 –2)/3, not 14/5
Solved by Splitting	Solved by ReCounting	Solved by Including Units

Hymn to Equations

Equations are the best we know, they are solved by isolation. But first, the bracket must be placed around multiplication. We change the sign and take away and only x itself will stay. We just keep on moving, we never give up. So feed us equations, we don't want to stop!

Recounting from Icons to Tens, Asking 6x7 = ?, we Meet Algebra in a Bundle-Bundle Square

With no 10-button, multiplication directly gives 6 7s as 4B2 tens

Recounting into tens with Overloads in List- & Block- & Cross Multiplication

 $1 \times 16 = 1 \times 1B6$ 1*B*6 1*B*6 = 16 $2 \times 16 = 2 \times 1B6$ 2*B*12 3B2 = 32 $3 \times 16 = 3 \times 1B6$ 3*B*18 4*B*8 = 48 $4 \times 16 = 4 \times 1B6$ 4*B*24 6*B*4 = 64 $5 \times 16 = 5 \times 1B6$ 8*B*0 = 5*B*30 80 $6 \times 16 = 6 \times 1B6$ 6*B*36 9*B*6 = 96 7*B*42 **11B2 =** 112 $7 \times 16 = 7 \times 1B6$ $8 \times 16 = 8 \times 1B6$ 8*B*48 | 12*B*8 = 128 $9 \times 16 = 9 \times 1B6$ 14*B*4 = 144 9*B*54 $10 \times 16 = 10 \times 1B6$ 10*B*60 | 16*B*0 = 160

	5 <i>B</i>	6	
4	20B	24	
3B	15 <i>BB</i>	188	
	15 <i>BB</i>	38 <i>B</i>	24
	15 <i>BB</i>	40 <i>B</i>	4
	19	0 <i>B</i>	4

34 56s is 190**B**4 tens

110

Increasing the Base, we Decrease the Height. So a Total may be BOX'ed, TEN'ed or SQUARE'd

Bundle-bundles as Squares Eases Algebra

ReCounting in two Units creates PerNumbers & Proportionality

ReCounting in kg & \$, gives a PerNumber 4kg per 5 = 4kg/5 = 4/5 kg/\$. With like units, per-numbers become fractions: 4\$/5\$ = 4/5, and 4\$/100\$ = 4/100 = 4%.

With 4kg linked to 5\$, we simply recount in the per-number.

(Or we recount the units directly. Or we equate the per-numbers. Or we use the before 1900

'Rule of 3' (Regula de Tri) alternating the units, and, from behind, first multiply, then divide.)

Questions: 12kg = ?\$	20\$ = ?kg
$12 \text{kg} = (12/4) \times 4 \text{kg}$	20\$ = (20/5) x 5\$
= (12/4) x 5\$ = 15\$	= (20/5) x 4kg = 16kg
\$ = (\$/kg) x kg = 5/4 x 12 = 15	kg = (kg/\$) x \$ = 4/5 x 20 = 16
u/12 = 5/4, so u = 5/4 x 12 = 15	u/20 = 4/5, so u = 4/5 x 20 = 16
If 4kg is 5\$, then 12kg is ?\$; answer: 12x5/4 = 15	If 5\$ is 4kg, then 20\$ is ?kg; answer: 20x4/5 = 16

Proportionality shows the Flexibility of Unit-Math

Proportionality, **Q1**: "2kg costs 5\$, what does 7kg cost"; **Q2**: "What does 12\$ buy?" →1) <u>Regula de Tri (</u>rule of three)

Re-phrase with shifting units, the unknown at last. From behind, first multiply then divide. Q1: '2kg cost 5\$, 7kg cost ?\$'. Multiply-then-divide gives the \$-number 7x5/2 = 17.5. Q2: '5\$ buys 2kg, 12\$ buys ?kg'. Multiply-then-divide gives the kg-number 12x2/5 = 4.8. \rightarrow 2) Find the unit

Q1: 1kg costs 5/2\$, so 7kg cost 7x(5/2) = 17.5\$. Q2: 1\$ buys 2/5kg, so 12\$ buys 12x(2/5) = 4.8kg → 3) Cross multiplication

Q1: 2/5 = 7/*u*, so 2**u* = 7*5, *u* = (7*5)/2 = 17.5. **Q2**: 2/5 = *u*/12, so 5**u* = 12*2, *u* = (12*2)/5 = 4.8

→4) '<u>Re-counting</u>' in the 'per-number' 2kg/5\$ coming from 'double-counting' the total T. Q1: T = 7kg = (7/2)x2kg = (7/2)x5\$ = 17.5\$; Q2: T = 12\$ = <math>(12/5)x5\$ = (12/5)x2kg = 4.8kg.

Proportionality also shows the Inflexibility of Greenhouse Mathematics

- → 5) <u>Modeling</u> with linear functions using group theory from abstract algebra.
- A linear function f(x) = c*x from the set of positive kg-numbers to the set of positive \$-numbers, has the domain DM = {x∈R | x>0}.
- Knowing that $f(2) = c^*2 = 5$, this equation is solved by multiplying with the inverse element to 2 on both sides, and applying the associative law, and the definition of an inverse element, and of the neutral element under multiplication:
 - $c^{*}2 = 5 \bullet (c^{*}2)^{*}\frac{1}{2} = 5^{*}\frac{1}{2} \bullet c^{*}(2^{*}\frac{1}{2}) = 5/2 \bullet c^{*}1 = 5/2 \bullet c = 5/2.$
- With $f(x) = 5/2^*x$, the inverse function is $f^{-1}(x) = 2/5^*x$.
- With 7kg, the answer is f(7) = 5/2*7 = 17.5\$.
- With 12\$, the answer is $f^{-1}(12) = 2/5*12 = 4.8$ kg.

Recounting gives per-numbers in STEM Multiplication Formulas I

STEM typically contains multiplication formulas with per-numbers coming from recounting.

Examples:

- kg = (kg/cubic-meter) x cubic-meter = density x cubic-meter
- force = (force/square-meter) x square-meter = pressure x square-meter
- meter = (meter/sec) x sec = speed x sec
- energy = (energy/sec) x sec = Watt x sec
- energy = (energy/kg) x kg = heat x kg

Recounting gives per-numbers in STEM and Economics Multiplication Formulas II

Extra examples from STEM, and from economics:

- gram = (gram/mole) x mole = molar mass x mole;
- Δ momentum = (Δ momentum/sec) x sec = force x sec;
- Δ energy = (Δ energy/ meter) x meter = force x meter = work;
- energy/sec = (energy/charge) x (charge/sec) or Watt = Volt x Amp;
- dollar = (dollar/hour) x hour = wage x hour;
- dollar = (dollar/meter) x meter = rate x meter
- dollar = (dollar/kg) x kg = price x kg.

With like Units, PerNumbers become Fractions, both Operators Needing Numbers to Become Numbers

Enlarging or Shortening Fractions

Taking 2/3 of 12 means taking 2 per 3 of 12. With 2 bridged to 3, we recount 12 in **3s**, 12 = $(12/3) \times 3 = 4 \times 3 = 4$ **3s** So 4 times we can take 2, i.e. 8 of the 12. Thus 2 per 3 = 8 per 12.

This may be used for enlarging or shortening fractions by inserting or removing the same unit above and below the fraction line:

$$\frac{2}{3} = \frac{2}{3} \frac{4s}{4s} = \frac{2^{*}4}{3^{*}4} = \frac{8}{12} \quad \bullet \quad \frac{8}{12} = \frac{2^{*}4}{3^{*}4} = \frac{2}{3} \frac{4s}{4s} = \frac{2}{3} \quad \bullet \quad \frac{12abc}{8a} = \frac{3^{*}4^{*}a^{*}b}{2^{*}4^{*}a} = \frac{3^{*}b}{2} \frac{4as}{2} = \frac{3b}{2}$$

Recounting Sides in a Block Halved by its Diagonal gives Trigonometry and Pi

A block cut by its diagonal creates a right triangle with three sides: the <u>base b</u>, the <u>height h</u>, and the <u>cut c</u>. They connect with the angle A by per-number formulas recounting the sides pairwise.

$$h = (h/b) \times b = \tan A \times b$$
$$h = (h/c) \times c = \sin A \times c$$
$$b = (b/c) \times c = \cos A \times c$$

 $h \times h + b \times b = c \times c$, so the diagonal adds bundle-bundles

A circle contains very many small half-blocks, so in the circumference: $\pi = n \times \tan(180/n)$ for *n* large

 $\tan A = h/b = \Delta y/\Delta x = rise/run = diagonal gradient$

В

h

b

Switching, Uniting & Splitting Units

- Turning a 2D block will change the unit T = 2 $3s = 2x3 \rightarrow T = 3 2s = 3x2$, So T = 2x3 = 3x2 (*The Commutative law*)
- Turning a 3D block will also change the unit So T = 2x(2x3) = (2x2)x3 (*The Associative law*)
- A block may split into two parts
 T = 3 5s = 3 2s + 3 3s
 C = T = 2 (2 + 2)
 - So T = 3x5 = 3x(2+3) = 3x2 + 3x3 (The Distributive law)

Prime Numbers & Foldable Numbers When can Blocks be Folded in like Bundles?

The block $T = 2 4s = 2 \times 4$ has 4 as the bundle-unit.

Turning over gives $T = 4 2s = 4 \times 2$, now with 2 as the bundle-unit.

4s can be folded in another bundle as 2 2s, whereas 2s cannot.

(1 is not a bundle, nor a unit since a bundle-of-bundles stays as 1).

We call 2 a prime unit number, and 4 a foldable unit number, 4 = 2 2s.

A block of 3 **2s** cannot be folded in like bundles.

A block of 3 **4s** can be folded: T = 3 4s = 3 x (2 x 2) = (3 x 2) x 2 = 2 3x2s.

A number is called **even** if it can be written with 2 as the unit, else **odd**.
Finding Possible Units What are Possible Units in T = 12? Units come from folding in prime units: $T = 12 = 2 \times 2 \times 3$ 3 2x2s = 2x2 3s = 2x3 2s2 2x3s T = 12= 4 **3**s T = 1 **12s** 2 **6s** 3 **4s** = 6 **2s** Ξ = Ξ

111

Recounting Large Numbers in or from Tens: Same Size, but a new Form

Recounting 6 47s in tens Recounting 476 in 7s $T = 6 47s = 6 \times 47$ T = 476 = 47.6 tens 6 x 4**B**7 = 47B6= 42**B**56 = 24B42= 28B2 $= 6 \times 7 B8 \times 7$ = 28.2 $= 68 \times 7$ = 68 **7s** tens

Operators become Areas Before Adding

Digits are operators, needing a number to become a number.

- And, per-numbers and fractions are also operators.
- So, to add, operators must first be multiplied to become a number But multiplying creates areas.

Digits and per-numbers and fractions thus add as areas, i.e., as integral calculus

- So, calculus comes in three versions
- Primary school calculus: adding digits as bundle-number blocks
- Middle school calculus: adding constant per-numbers and fractions
- High school calculus: adding changing per-numbers

In Unit-Math, BLOCKS are Fundamental

Children see Many as blocks with a number of bundles, and use flexible numbers with units and with over- or underloads

- in numbers: 456 = three blocks
- in algebra: adding blocks next-to or on-top
- in geometry: trigonometry recounts half-blocks

Once Counted & Recounted, Totals may Add

"If T1 = 2 3s and T2 add next-to as 4 7s, what is T2?"

We pull away the initial block T1 before recounting the rest in **4s**.

The recount formula predicts the result:

$$T2 = (T2/B) \times B$$

$$= ((4x7 - 2x3)/4) \times 4 = 5.2$$
4s

Since reversed next-to addition finds area-differences, it is called differential calculus. Here subtraction precedes division; which is natural as reversed integration.

Per-numbers add as Areas (Integral Calculus)

Here, the per-number p is <u>piecewise constant</u>, which gives the sum Σ ($p^*\Delta x$) that becomes $\int p^* dx$, if it is <u>locally constant</u>, by interchanging epsilon and delta

"2kg at **3\$/kg** + 4kg at **5\$/kg** = 6kg at **? \$/kg**?"

- 2 kg at **3 \$/kg** + 4 kg at **5 \$/kg** (2+4) kg at **p \$/kg**
- Unit-numbers add directly.
- Per-numbers must be multiplied to unit-numbers, thus adding as areas under the per-number curve.
- Here, multiplication before addition
- So, per-numbers and fractions are not numbers, but operators needing numbers to be numbers.

Subtracting PerNumbers (Differentiation)

"2kg at **3\$/kg** + 4kg at **what** = 6kg at **5\$/kg**?"

2 kg at **3 \$/kg** + 4 kg at **? \$/kg** 6 kg at **5 \$/kg**

We remove the initial 2x3 block, and recount the rest in 4s to get the per-number.

So, reversed per-number addition means subtracting areas to be reshaped, called differential calculus.

Here subtraction (giving a change, Δ) comes before division, the reverse of multiplication before addition in integral calculus.

Adding Fractions without Units creates a Fraction Paradox

MATHeCADEMY.net

Math

Se

MANYmath

Natura

cie

nce

bout MAN

The Teacher	The Students	
What is 1/2 + 2/3?	Well, 1/2 + 2/3 = (1+2)/(2+3) = 3/5	
No! 1/2 + 2/3 = 3/6 + 4/6 = 7/6	But 1 red of 2 apples + 2 red of 3 apples is 1+2 red of 2+3 apples, i.e., 3 red of 5 apples! How can it be 7 red out of 6 apples?	
Inside this classroom 1/2 + 2/3 IS 7/6, always!		

Again we see that fractions are not numbers, but operators, needing numbers to become numbers. Adding operators without units, may fold outside the 'no-unit-math' greenhouse. *Mixing English and metric units made NASA's Mars Climate Orbiter fail in 1999.*

Adding Numbers with Like Units, 6+9

Inside the 'no-unit-math' paradigm, numbers add **serial** next-to on the number line. We find the result by counting on from 6 or 9.

Outside, in the 'unit-math' paradigm, numbers add **parallel** on-top. We see that T = 6 + 9 = 2B3 6s = 2B-3 9s = 2B-5 tens = 1B5 tens = 15

Added directly as less-numbers:

T = 6 + 9 = B - 4 + B - 1 = 2B - 5 = 15

Subtracting Numbers with Like Units, 9-6

Inside the 'no-unit-math' paradigm, numbers subtract **serial** next-to on the number line. We find the result by counting backwards.

Outside, in the 'unit-math' paradigm, numbers subtract **parallel** on-top. We see that T = 9 - 6 = 3; and that $T = 6 - 9 = \frac{1000}{1000}$, since $6 = 9\frac{1000}{1000}$

Subtracted directly as less-numbers:

$$F = 9 - 6 = B - 1 - (B - 4) = 0 - 1 - 4 = -1 + 4 = 3,$$

T = 6 - 9 = B - 4 - (B - 1) = 0 - 4 - 1 = -4 + 1 = -3, both showing that - - is +

Adding or Subtracting Unspecified Numbers Only add like units, so how to add $T = 4ab^2 + 6abc$?

With 2x3 as 2 3s, here units come from folding (factoring):

$$T = 4ab^2 + 6abc = T1 + T2$$

- $= 2 \times 2 \times a \times b \times b + 2 \times 3 \times a \times b \times c$
- $= 2 \times b \times (2 \times a \times b) + 3 \times c \times (2 \times a \times b)$
- = (2*b*+3*c*) x **2***ab*
- = 2*b*+3*c* **2***ab*s

a factor-filter

T1	2	2	а	b	b
T2	2	3	а	b	С
unit	2		a	b	
T1 left		2			b
T2 left		3			С

Change by Adding, and by Multiplying

- Change by adding gives a <u>linear change formula</u>:
 Adding 3\$/day to 2\$ gives a total of T = 2 + 3 x n after n days.
 The general formula, <u>T = b + a x n</u>, is also called change by adding.
- Change by multiplying gives an <u>exponential change formula</u>:
 Adding 3%/day to 2\$ gives a total of T = 2 x 103%ⁿ after n days since adding 3% means multiplying with 103%.

The formula, $T = b \times a^n = b \times (1+r)^n$, is also called change by multiplying,

Combining the two gives a simple saving-formula, <u>A/a = R/r</u>; in an installment plan racing with a Debt-formula, D = Do x (1+r)ⁿ.

(*a* and *r* is the per-day \$ and % input; *A* and *R* is the final \$ and % output, where $1+R = (1+r)^n$ Splitting up 100% in *n* pieces gives the Euler-number $e = (1+1/n)^n$ for *n* big.

Reversing Change by Adding and Multiplying

Reversing change by adding gives one equation:

- <u>100 = 20 + 5 x u</u>, easily solved by splitting, and recounting:
- 100 = (100–20)+20, so *u*x5 = 100–20 = 80 = (80/5)x5, so *u* = 80/5 = 16.

Reversing change by multiplying gives two equations:

- In $\underline{20} = u^{5}$, 5 factors *u* give 20, predicted by a <u>factor-finding root</u>, $u = \sqrt[5]{20} = 1.82$.
- In <u>20 = 5ⁿ</u>, *u* factors 5 give 20, predicted by a <u>factor-counting logarithm</u>, *u* = log₅(20) = 1.86.

There are 4 ways to Unite or Split a Total into Unit- and Per-numbers

A number-formula (polynomial) $T = 345 = 3BB4B5 = 3xB^2 + 4xB + 5$ shows the 4 ways to unite: +, x, ^, next-to block-addition (integration). <u>Addition</u> and <u>multiplication</u> unite changing and constant unit-numbers. <u>Integration</u> and <u>power</u> unite changing and constant per-numbers. We might call this beautiful simplicity the 'Algebra Square' since in Arabic, algebra means to reunite. • The 4 uniting operations each has a reverse splitting operation: Addition has <u>subtraction</u> (–), and multiplication has <u>division</u> (/). Power has factor-finding (<u>root</u>, V) and factorcounting (<u>logarithm</u>, log). Integration has per-number finding (<u>differentiation</u> dT/dn = T'). Reversing operations is solving equations, done by moving to **opposite side** with **opposite sign**.

Operations unite / split into	Changing	Constant
Unit-numbers	T = a + n	$T = a \times n$
\$, kg, m, s	T-a=n	<i>T/n = a</i>
Per-numbers	<i>T</i> = ∫ <i>a</i> d <i>n</i>	<i>T</i> = <i>a</i> ^ <i>n</i>
\$/kg, m/s, m/(100m) = %	dT/dn = a	$log_a T = n, n \sqrt{T} = a$

8 Competencies Inside the No-Unit Greenhouse only 2 Competences Outside

To do: Findthe 8 competencies inside the NoUnit Greenhouse. Why are they not needed outside the Greenhouse?

11

OECD 's View is in its Learning Framework 2030 Instead of Mathematics, it points to Numeracy

Concepts have Different Definitions in the 'no-unit-Math' and the 'unit-Math' Paradigm

	Inside 'no-unit-Math'	Outside the 'no-unit' Greenhouse
Goal	To master, first Math, later Many	To master first Many, later Math
Basis	Sets, expressions, and functions	Many, counted and added in full sentences
Science	Pure science	Natural science about Many
Self-reference	Self-reference is meaningful	Self-reference is meaningless
Validity	Addition and multiplication are valid	Multiplication is always valid, addition only sometimes
Education	Mediate institutionalized essence	Exploring existing things and actions
Theorist	Vygotsky	Piaget
Competence	8 needed to master Math	2 needed to master Many: Count and Add
Accessible	To few only	To all
Modeling	All models are fiction	Fact and fiction as in the word-language

Concepts have Different Definitions Inside and Outside the 'no-unit-Math' Greenhouse II

	Inside 'no-unit-Math'	Outside the 'no-unit' Greenhouse
Digits	Symbols as letters	Icons with as many sticks as they represent
Many digits	One number obeying a place value system	Many numbers numbering unbundled, bundles, bundles, bundle-of-bundles, etc.
Numbers	Line-numbers with lengths, without units	Block-numbers with areas, and with units
Types	Cardinal and ordinal numbers	Space and time numbers
Divide, 8/2	Equal sharing, 8 equally shared by 2	Bundle-counting, 8 counted in 2s
Multiply, 6x7	6x7 = 42 = 4.2 tens, recounted in tens,	6x7 = 6 7s, a block that may or not recount in tens
Subtract, 7–2	Take away singles, 7 – 2 = 5	Pull away a block to look for unbundled singles 7 – $2x3 = 1$. So, T = 7 = $2B1 3s$
Add	Unite line-segments 2+3 = 5	Unite areas on-top; or next-to, integral calculus 2 3s + 4 5s = ? 5s; or 2 3s + 4 5s = ? 8s

Concepts have Different Definitions Inside and Outside the 'no-unit-Math' Greenhouse III

	Inside 'no-unit-Math'	Outside the 'no-unit' Greenhouse
PerNumber	Not recognized	Recounting in two units
Fraction	A rational number to add without units	A per-number, both operators needing a number to become a number; so they add by areas, integral calculus
Geometry	Plane, coordinate, trigonometry	Trigonometry, coordinate, plane
Equations	Equivalence relation, solved by using abstract algebraic group theory	Reversed calculation, solved by moving to opposite side with opposite sign
Function	A subset of a set-product where first-comp. identity implies second-component identity	A number-language sentence or formula with an subject, and a predicate or calculation
Graph	A subset in a set-product	Running numbers in a plane
Linear function	A homomorphism	Constant change per-number (gradient, slope)
Differentiable	Meeting an epsilon-delta condition	Locally linear, with a locally constant change per-number
Continuous	Meeting an epsilon-delta condition	Locally constant, as piecewise, only epsilon <-> delta

110

Concepts have Different Definitions Inside and Outside the 'no-unit-Math' Greenhouse IV

	Inside 'no-unit-Math'	Outside the Greenhouse
Root, log	Irrational numbers	Root is a factor-finder, log is a factor-counter
PreCalculus	Linear and exponential functions	Constant change by adding & multiplying
Statistics	Stochastics and random variables	Unpredictable change predicted by mean & median
Quadratics	Degree 2 polynomials to factorize	Constant changing change and curvature
Calculus	Derivatives and anti-derivatives	Adding and finding locally constant per-numbers
Differential	Derivatives as limits, first	Change predicted by locally constant per-numbers, next
Integral	Finding anti-derivatives, next	Adding locally constant per-numbers by areas, first
Differential	Only few have solutions	Change formulas, numerically solved by a computer
equations	Numerical methods should be avoided	adding the formula's changes to a total change
Vectors	Vector space: the top algebraic structure	A quick way to do 2D and 3D coordinate geometry

110

Solving Equations by Recounting, we may Bracket Group Theory from Abstract Algebra

2 x <i>u</i> = 8 = (8/2) x 2	Solved by re-counting 8 in 2s
<i>u</i> = 8/2 = 4	Move: Opposite Side with OppoSite Sign

No-unit-Math (Don't test, but DO remember the bi-implication arrows)

	2 x <i>u</i> = 8	Multiplication has 1 as its neutral element, and 2 has ½ as its inverse element	
	$(2 \times u) \times (\frac{1}{2}) = 8 \times (\frac{1}{2})$	Multiplying 2's inverse element ½ to both number-names	
C	$(u \times 2) \times (\frac{1}{2}) = 4$	Applying the commutative law to u x 2; 4 is the short number-name for 8 x ½	
	$u \ge (2 \ge (\frac{1}{2})) = 4$	Applying the associative law	
C	<i>u</i> x 1 = 4	Applying the definition of an inverse element	
D	<i>u</i> = 4	Applying the definition of a neutral element. With arrows a test is not needed.	
	Solution set: $S = \{ u \text{ in } R \mid 2 x u = 8 \} = \{4\}$		

 $\textcircled{\belowdelta}{\belowdelta}$

 (\bullet)

 $\odot \odot \odot$

 $\odot \odot \odot$

 \rightarrow

The Child's own Unit-Math Curriculum

1) Digits are (sloppy) icons, with as many sticks as they represent.

- 2) Totals are counted by bundling, giving geometrical multi-blocks, and algebraic bundle-numbers with units, when turned to hide the units behind.
- 3) Operations are icons showing the counting steps. First PUSH & LIFT bundles. Then PULL stacks to find the unbundled ones.
- 4) The operation order is division first, then multiplication, then subtraction. Addition next-to & on-top comes later after totals are counted & re-counted.
- 5) Counting & re-counting is big fun, when predicted by a calculator with the recount formula: **T** = (**T**/**B**)**xB** (*The total T contains T/B times Bs*)

Question: T = 4 5s = ? 3s • Answer: T = 4 5s = 6B2 3s • Prediction: 4x5/3

/3 6.some - 6x3 2

Differences to the No-Unit-Math Curriculum I

Suns.

A no-unit-math curriculum operates on specified and unspecified numbers.

- Digits are given directly as symbols, without letting children discover digits as icons with as many strokes or sticks as they represent.
- Numbers are one-dimensional line-numbers with digits respecting a place value system, without letting children discover the thrill of twodimensional bundling and stacking, counting both <u>singles</u> and <u>bundles</u> and <u>bundles-of-bundles</u> etc., and also including the units.
- Seldom, if ever, 0 is included in the counting sequence as '0Bundle1, 0B2, 0B3', in order to show the importance of bundles as units.

Differences to the No-Unit-Math Curriculum II

- Never children are told that eleven and twelve comes from the Vikings, counting '(ten and) 1 left', '(ten and) 2 left'.
- Never children use full number-language sentences, T = 2 **5s**, including both a subject & a verb & a predicate with a unit.
- Seldom children are asked to describe numbers after ten as 1B4 tens or 1ten4 or 1.4 tens with a unit and with a decimal point separating bundles and unbundled singles.
- Seldom 17 is recounted as 2B-3 tens, or 2.-3 tens. Nor is 24 recounted as 1B14 tens, or 3B-6 tens.

Differences to the No-Unit-Math Curriculum III

- The tradition never respects the natural order of operations. Instead it turns the order around by giving addition without units priority over subtraction & multiplication & division.
- In short, children never experience the enchantment of counting and re-counting Many before being forced to add on-top only, thus neglecting next-to addition.

Re-enchanting Many therefore is a goal for the unit-math curriculum in Mastery of Many. So, it respects and develops the children's existing mastery of Many, by counting before adding, and by using flexible bundle-numbers with units.

Summary: What is the Core Difference?

Different Answers from ESSENCE- & EXISTENCE-based Math Education

Conclusion I

So, to become a full science, mathematics should leave its 1 plus 2 is 3 'no-unit-math' greenhouse, and accept that, of course, numbers cannot add without units.

It should teach the outside 'counting-before-adding' 'unit-math' paradigm where

- Numbers and operations are icons linked directly to existing things and actions
- Totals are bundle-counted to create flexible bundle-numbers that with overloads and underloads include decimals, negatives and fractions for the unbundled singles
- Recounting to change unit creates a recount formula, T = (T/B)xB, that solves proportionality equations all over mathematics and STEM
- Adding next-to and on-top leads directly to the math core: calculus and linearity

Conclusion II

- Bundle-counting means pushing away bundles by division, lifting bundles into a block by multiplication, and pulling away the block to find unbundled singles that may be counted as decimals, fractions or negatives
- Recounting a total in another unit creates a recount formula, T = (T/B)xB, predicting recounting results and proportionality all over STEM
- Recounting from tens to icons gives multiplication-equations solved by moving known numbers to opposite side with opposite calculation sign
- Recounting from icons to tens roots multiplication tables, and algebra
- Recounting in physical units creates per-numbers, becoming fractions with like units; both are not numbers, but operators needing numbers to become numbers
- Recounting the sides in a block halved by its diagonal creates trigonometry and pi

Conclusion III

- Adding blocks next-to means integrating areas thus becoming integral calculus, subtracting blocks then becoming differential calculus
- Adding blocks on-top, the units become like through proportional recounting
- Per-numbers add by their areas under the per-number graph
- A total may change by adding, or by multiplying. Reversing change by multiplying gives the factor-finding root, and the factor-counting logarithm
- The algebra-square shows the 4 ways to unite parts into a total, and the 5 ways to split a total into parts
- In philosophy, the 'unit-math' paradigm resonates with existentialism (where existence precedes essence); and with Piaget psychology (where learning takes place through guided meetings with the subjects, and not by having institutionalized essence mediated)

A Communicative Turn in Language Education

Before 1970, foreign language was taught as an example of its grammar.

Then a reaction came with The Communicative Turn.

Halliday: "A functional approach to language means investigating how language is used: trying to find out what are the purposes that language serves for us." Likewise, **Widdowson** adopts a "communicative approach to the teaching of language" so

more students learn a language by communicating about outside things and actions.

Also mathematics should have its Communicative Turn!

So, language before	WORD language	NUMBER language
meta-language, please.	Meta-	Language
Inside Language		T = 3.4s
Outside world		Hattenatics

A Final Question SUSTAINABLE GUESTALS

Should <u>Ethical Quality Education</u> force children inside a 'no-unit-math' greenhouse that slowly strangles their innate number-language by using line-numbers to learn no-unit addition that folds outside?

Where children's innate mastery of Many just waits to be developed by flexible bundle-numbers available at their fingertips.

BundleCount Before you Add Booklet Free to Download

Math **Dislike CURED** by Flexible BundleNumbers My Many Math Tears will not Stay - if I Bundle the Stray Away BundleCOUNT before you ADD T = 5 = H | | | = 1B3 2sT = 5 = H H I = 2B1 2sT = 5 = # # # # = 3B-1 2s3 ways to BundleCount: Overload, Normal, Underload ReCount 47 in tens: T = 47 = 4B7 = 3B17 = 5B-3 tens NO, 4x7 is not 28, it is 4 7s = 2B8 = 1B18 = 3B-2 tens NO, 30/6 is not 30 split by 6, but 3 tens recounted in 6s BundleWriting tells InSide Bundles from OutSide Singles = 6B5 + 2B7 = 8B12 = 9B2 =• 65 + 27 92 • 65 - 27 = 6B5 - 2B7 = 4B - 2 = 3B8 =38 = 7x 4B8 = 28B56 = 33B6 = 336 7x 48 • 336 /7 = 33B6/7 = 28B56/7 = 4B8 =48

= 33B6 /7 = 35B-14 /7 = 5B-2 = MatheMatics as ManyMath - a Natural Science about Many Makes Math Potentials Blossom in Children, Adults & Migrants

48

• 336 /7

Allan.Tarp@MATHeCADEMY.net

Contents

Preface

Introduction to the Chapters

01. From Sticks to Icons
02. Counting-sequences in Icons
03. BundleCount in Icons
04. BundleCount with Dices7
05. ReCount in the Same Unit9
06. ReCount in a New Unit11
07. ReCount in BundleBundles
08. ReCount in Tens on Squared Paper or an Abacus15
09. ReCount from Tens
10. ReCount Large Numbers in Tens 19
11. DoubleCount with PerNumbers21
12. DoubleCount with Fractions and Percentages
13. ReCount PerNumbers, Fractions23
14. Add OnTop
15. Reversed Adding OnTop25
16. Add NextTo
17. Reversed Adding NextTo27
18. Add Tens
19. Reversed Adding Tens
20. Recounting Solves Equations

03. BundleCount in Icons

9 in 5s 9	Line Count Bundle Stack B-write Answer Line Count Bundle B-write	T =	9/5 9 - 1*5 9 - 0*5 9 - 2*5 9/4	1.some 4 9 -1
9 in 5s	Count Bundle Stack B-write Answer Line Count Bundle B-write	1, 2, 3, 4, 8, 181, 182, 183, <u>184</u> T = $\downarrow \downarrow \downarrow \downarrow \downarrow$ T = 184 5s = 089 5s = 28-1 5s T = 9 = 1.4 5s T = 1, 2, 3, 8, 181, 182, 183, 28, <u>281</u> T = $\downarrow \downarrow \downarrow \downarrow \downarrow$	9 - 1*5 9 - 0*5 9 - 2*5 9/4	4 9 -1
9 in 5s 9	Bundle Stack B-write Answer Line Count Bundle B-write	T = I + + + + T = 184 5s = 089 5s = 28-1 5s T = 9 = 1.4 5s T = 1, 2, 3, 8, 181, 182, 183, 28, 281 T = + + + + + + +	9 – 0*5 9 – 2*5 9/4	9-1
in 5s	Stack B-write Answer Line Count Bundle B-write	T = 184 5s = 089 5s = 28-1 5s <u>T = 9 = 1.4 5s</u> T = 1	9-0*5 9-2*5 9/4	9 -1
9	B-write Answer Line Count Bundle B-write	T = 184 5s = 089 5s = 28-1 5s <u>T = 9 = 1.4 5s</u> T = 1	9-2*5 9/4	-1
9	Answer Line Count Bundle B-write	<u>T = 9 = 1.4 5s</u> T = 1 1, 2, 3, 8, 1B1, 1B2, 1B3, 2B, 2B1 T = ++++++++	9/4	2 come
9	Line Count Bundle B-write	T =	9/4	2 como
9	Count Bundle B-write	1, 2, 3, B, 1B1, 1B2, 1B3, 2B, <u>2B1</u> T = 	5/4	* * * * * * * * * * * * * * * * * * *
9	Bundle B-write	T = + + + + + + + + + + + + + + + + + +	- 1 7 /	2.501110
in de l	B-write		5-24	1
in 45		T = 2B1 4s = 1B5 4s = 3B-3 4s	0 1*4	5
5	Stack		9-14	2
4	Answer	T = 9 = 2.1 4s	9-3-4	-3
1	Line			
	Count			
9	Bundle		9/	
in 3s	B-write		9 –	
	Stack			
	Answer			
	Line			
	Count			
8	Bundle		8	
in 4s	B-write		8	
	Stack			
	Answer			
1	Line			
	Count			
8	Bundle		8	
in 3s	B-write		8	
1	Stack			
	Answer			

MATHeCADEMY.net

1day free Zoom Seminar:

To Cure Math Dislike, **BundleCount** before you **Add**

Action Learning based on the Child's own Bundle-Numbers with Units

09-11. Listen and Discuss the PowerPointPresentation

Flexible Bundle-Numbers Develops Children's Innate Mastery of Many, from MetaMatism to ManyMath

- MetaMatism = MetaMatics + MatheMatism
- MetaMatics presents a concept TopDown as an example, instead of BottomUp as an abstraction
- MatheMatism is true inside, but seldom outside the 'no-unit-math' greenhouse
- ManyMath, a natural science about Many, mastering Many by BundleCounting, ReCounting & Adding NextTo and OnTop.

11-13. Zoom Conference. Lunch.

13-15. Workshop in the <u>BundleCount before you Add</u> booklet to experience proportionality & calculus & solving equations as golden LearningOpportunities in BundleCounting & NextTo Addition.

15-16. Coffee. Zoom Conference.

8 MicroCurricula for Action Learning & Research

- C1. Create Icons
- C2. Count in Icons
- C3. ReCount in the Same Icon (Negative Numbers)
- C4. ReCount in a Different Icon (Proportionality)
- A1. Add OnTop (Proportionality)
- A2. Add NextTo (Integrate)
- A3. Reverse Adding OnTop (Solve Equations)
- A4. Reverse Adding NextTo (Differentiate)

Question Guided Teacher Education

MATHeCADEMY.net

Teaches Teachers to Teach MatheMatics as ManyMath, a Natural Science about MANY.

To learn Math, Count & Add MANY, using the CATS method:

Count & Add in Time & Space

- Primary: C1 & A1 & T1 & S1
- Secondary: C2 & A2 & T2 & S2

MATHeCADEMY.net a VIRUSeCADEMY: ask Many, not the Instructor

SUMMARY

	QUESTIONS	ANSWERS		
Cl	How to count Many?	By bundling and stacking the total T predicted by $T = (T/b)*b$		
COUNT	How to recount 8 in 3s: $T=8=?$ 3s	T = 8 = ?*3 = ?3s, T = 8 = $(8/3)$ *3 = 2*3 +2 = 2*3 +2/3*3 = 2 2/3*3 If 4kg = 2\$ then 6kg = $(6/4)$ *4kg = $(6/4)$ *2\$ = 3\$		
	How to recount 6kg in \$: T=6kg=?\$			
	How to count in standard bundles?	Bundling bundles gives a multiple stack, a stock or polynomial:		
		$T = 423 = 4BundleBundle+2Bundle+3 = 4tenten2ten3 = 4*B^2+2*B+3$		
C2	How can we count possibilities?	By using the numbers in Pascal's triangle		
COUNT	How can we predict unpredictable	We 'post-dict' that the average number is 8.2 with the deviation 2.3.		
	numbers?	We 'pre-dict' that the next number, with 95% probability, will fall in the		
		confidence interval 8.2 ± 4.6 (average ± 2 *deviation)		
A1	How to add stacks concretely?	By restacking overloads predicted by the restack-equation T= (T-b)+b		
ADD	T=27+16= 2ten7+1ten6= 3ten13=?	T = 27+16 = 2 ten 7+1 ten 6 = 3 ten 13 = 3 ten 1 ten 3 = 4 ten 3 = 43		
	How to add stacks abstractly?	Vertical calculation uses carrying. Horizontal calculation uses FOIL		
A2	What is a prime number?	Fold-numbers can be folded: 10=2fold5. Prime-numbers cannot: 5=1fold5		
ADD	What is a per-number?	Per-numbers occur when counting, when pricing and when splitting.		
	How to add per-numbers?	The \$/day-number a is multiplied with the day-number b before added to		
		the total $-number T$: $T2 = T1 + a*b$		
T1	How can counting & adding be	By calculating backward, i.e. by moving a number to the other side of the		
TIME	reversed ?	equation sign and reversing its calculation sign.		
	Counting ? 3s and adding 2 gave 14.	x*3+2=14 is reversed to $x = (14-2)/3$		
	Can all calculations be reversed?	Yes. x+a=b is reversed to x=b-a, x*a=b is reversed to x=b/a, x^a=b is		
		reversed to x=a√b, a^x=b is reversed to x=logb/loga		
T2	How to predict the terminal number	By using constant change-equations:		
TIME	when the change is constant?	If Ko = 30 and $\Delta K/n = a = 2$, then K7 = Ko+a*n = 30+2*7 = 44		
		If Ko = 30 and $\Delta K/K = r = 2\%$, then K7= Ko*(1+r)^n= 30*1.02^7= 34.46		
	How to predict the terminal number	By solving a variable change-equation:		
	when the change is variable, but	If Ko = 30 and dK/dx = K', then $\Delta K = K-Ko = JK'dx$		
	predictable?			
S1	How to count plane and spatial	By using a ruler, a protractor and a triangular shape.		
SPACE	properties of stacks and boxes and	By the 3 Greek Pythagoras', mini, midi & maxi		
	round objects?	By the 3 Arabic recount-equations: sinA=a/c, cosA=b/c, tanA=a/b		
S2	How to predict the position of	By using a coordinate-system: If $Po(x,y) = (3,4)$ and if $\Delta y/\Delta x = 2$, then		
SPACE	points and lines?	$P1(8,y) = P1(x+\Delta x, y+\Delta y) = P1((8-3)+3, 4+2*(8-3)) = (8,14)$		
	How to use the new calculation	Computers can calculate a set of numbers (vectors) and a set of vectors		
	technology?	(matrices)		
QL	What is quantitative literature?	Quantitative literature tells about Many in time and space		
	Does quantitative literature also	The word and the number language share genres:		
	have the 3 different genres: fact,	Fact is a since-so calculation or a room-calculation		
	fiction and fiddle?	Fiction is an if-then calculation or a rate-calculation		
		Fiddle is a so-what calculation or a risk-calculation		

Teacher Training in ManyMath, using CATS Count & Add in Time & Space

Unit Land Description Description <thdescription< th=""> <thdescription< th=""> <thdescripti< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thdescripti<></thdescription<></thdescription<>							
Edit View Window Help x View Window Help x Edit View Window Help 44 30% w will w 20% w 20% w 20% w 20% w	JUN 11.pdf - Adobe Reader			pdf - Adobe Reader		IMEL.pdf - Adobe Reader	
<form><form><form><form><form><form></form></form></form></form></form></form>	Edit View Window H	elp	×	: View Window Help	×	Edit View Window Help	*
<text><text></text></text>	/ 4 50% 💌	₹ Fill & Sign	Comment	50% ▼	Fill & Sign Comment) 1 / 5 50% 🕶 🛃	∓ Fill & Sign Comment
GRASP by grasping - the LAB approach MATHeCADEMY.net GRASP by grasping - the LAB approach MATHeCADEMY.net	COUNTING MANY Quertion Row to count Many? How to reacount Sign 15: How to reacount Sign 15: How to reacount Sign 15: How to reacount Sign 15: How to count in standard 1 REPETITION BECOME Quertion. How can use of Anaryer. By comiting the SUNDLES BECOME IC Quertion. How can use of Anaryer. By comitant in A MANY BECOMES BUN Quertion. How can use of Anaryer. By comitant with Example: The standard of the Counting of the Standard of the Anaryer. By counting the Anaryer. By counting the Anaryer. By counting the Count of the Standard of the Anaryer. By counting the Count of the Standard of the Standard of the Standard of the Count of the Standard of the Standard of the Standard of the Count of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standard of the Standa	Answers By bundling and stacking the total T predicted By bundling and stacking the total T predicted ES = 7.3 IT = 5 = 721, T = 5 = (53) + 3 = 723 + 22 T = 5 are 7.3 IF H = 2 5 then Gigs T = 5 = (54) + 25 = 723 + 22 statement of the total and and the total and the total total total T T = 4.23 = 4.0 million mi	C1 by T = (7/b)*b. 2'3 + 2'3/3'3 = 2 2/3'+3 3'5 ck or polynomial: tea3 = 4*B'2+2*B+3 beat of the beart → III III III or icons, realising that leven and twelve. bundled and equal 34=3*4 (a stock) 34=3*4 (a stock) 1*4 + 3*1 (a stock) 1*4 + 1% *4 = 3 % *4 ***********************************	ADDING MANY $\frac{\text{Operations:}}{\text{Torrestory}} \frac{\text{Answers:}}{\text{By restacking Torrestory}} \frac{\text{Answers:}}{\text{By restacking Torrestory}} \frac{\text{Answers:}}{\text{By restacking Torrestory}} \frac{\text{Answers:}}{\text{Vertical actions:}} \frac{1}{\text{STACKS ARE SOLD}} \\ \text{Questions: Afform the stock T = 3 5 + 2 1 is us want tore:} and answers:} \frac{1}{\text{Answers:}} \frac{1}{A$	A overloads predicted by the restack-squarion $T = (T-b)^{+}b$ $(13-10^{+}10) = 3 taultau = 4 tau = 43$ lation uses carrying. Horizontal calculation uses FOIL so have? ginternal trade. solid bit -ixet tautaing 15, to 5 is: $\frac{1}{2} \frac{1}{2} \frac{1}{2} + (7.3) + 3 = \frac{1}{2} \frac{1}{2} \frac{1}{2} + 4 + 3$ write T= 33.4 = 3)/2(1)=3.1(1)+2(3)=2(1)/2(3)=2(1)=24 $\frac{1}{2} \frac{1}{2} \frac{1}{2} + (7.3) + 3 = \frac{1}{2} \frac{1}{2} \frac{1}{2} + 4 + 3$ write T= 33.4 = 3)/2(1)=3.1(1)+2(3)=2(1)/2(3)=2(1)=24 $\frac{1}{2} \frac{1}{2} \frac{1}{2} + (7.3) + 3 = \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} $	COUNT & ADD IN TIME Question How can commig & adding to reversed? Longing 7.55 and adding 1 gives 14. Conting equations to reversed? 1 REVERSED CODINO Question. How can we decode a coded much Answer. Use reversed adcluttons, also calls solving equations. Example. Example. Coding hids the bundle-size: T=0 ⁺³ +1 > TA A the conto use used to gause the Tool when on The table can be drawn as a graph. $\frac{ x =2^{+2}+x+1 x $	The stack equation and the record equation y^{2} is calculation of y^{2} is $(3, 2)^{2} + 1$. The stack equation and the record equation y^{2} is $(3, 2)^{2} + 1^{2}$. The stack equation and the record equation y^{2} is $(3, 2)^{2} + 1^{2}$. The stack equation and the record equation y^{2} is $(3, 2)^{2} + 1^{2} + 1^{2}$. The stack equation and the record equation y^{2} is $(3, 2)^{2} + 1^{2} +$

PYRAMIDeDUCATION

In PYRAMIDeDUCATION a group of 8 teachers are organized in 2 teams of 4 choosing 2 instructors and 3 pairs by turn.

- Each pair works together to solve Count&Add problems.
- The coach assists the instructors when instructing their team and when correcting their Count&Add assignments.
- Each teacher pays by coaching a new group of 8 teachers.

Watch MrAlTarp YouTube Videos

- Postmodern Mathematics Debate
- ReCounting removes Math Dislike
- IconCounting & NextTo-Addition
- PreSchool Mathematics
- Fractions
- PreCalculus
- Calculus
- Mandarin Mathematics
- World History

DifferenceResearch finds Differences making a Difference Action Research Action Learning or Uncover a difference **Publish** Listen Local Peers (Re)Design **Global Peers** Share Test Observe

Recounting looks like Dienes MultiBase Blocks

- "Dienes' name is synonymous with the Multi-base blocks (also known as Dienes blocks) which he invented for the teaching of place value.
- He also is the inventor of Algebraic materials and logic blocks, which sowed the seeds of contemporary uses of manipulative materials in mathematics instruction.
- Dienes' place is unique in the field of mathematics education because of his theories on how mathematical structures can be taught from the early grades onwards using multiple embodiments through manipulatives, games, stories and dance."

(http://www.zoltandienes.com/about/)

Dienes on Numbers and MultiBase Blocks

"The position of the written digits in a written number tells us whether they are counting singles or tens or hundreds or higher powers. This is why our system of numbering, introduced in the middle ages by Arabs, is called the place value system. My contention has been, that in order to fully understand how the system works, we have to understand the concept of power. (..) In school, when young children learn how to write numbers, they use the base ten exclusively and they only use the exponents zero and one (namely denoting units and tens), since for some time they do not go beyond two digit numbers. So néither the base nor the exponent are varied, and it is a small wonder that children have trouble in understanding the place value convention. (..) Educators today use the "multibase blocks", but most of them only use the base ten, yet they call the set "multibase". These educators miss the point of the material entirely."

(What is a base?, http://www.zoltandienes.com/academic-articles/)

UnitMath turns MetaMath upside down

Dienes teaches the 1D place value system with 3D blocks to illustrate the importance of the power concept.

• Unit-Math teaches decimal numbers with units and stays with 2D to illustrate the importance of bundle-units and of adding areas.

Dienes wants to bring examples of abstractions to the classroom

• Unit-Math wants to build abstractions from concrete examples

Dienes teaches top-down 'MetaMath' derived from the concept Set

 Unit-Math is a bottom-up natural science about the physical fact Many; and sees Set as a meaningless concept because of Russell's set-paradox: The set of sets not belonging to itself, belong to itself if it does not.

Theoretical Background

Tarp, A. (2018). Mastering Many by counting and recounting before adding on-top and next-to. *Journal of Math Education, March 2018, 11*(1), 103-117.

Tarp, A. (2020). De-modeling numbers, operations and equations: from inside-inside to outsideinside understanding. *Ho Chi Minh City Univ. of Education Journal of Science 17*(3), 453-466. Tarp, A. (2022). Bundles bring back brains from unethical special education. *Journal of Math Education*, submitted.

Meeting Many we Bundle-COUNT before we ADD Flexible Bundle-Numbers Develop the Child's Innate Mastery of Many *A Paradigm Shift from LineNumbers without to BundleNumbers with Units*

This presentation and its PDF may be found here: <u>http://mathecademy.net/Korean-math-ed-2021/</u> Q&A: Questions and answers are shown here also. Mail: Allan.Tarp@MATHeCADEMY.net YouTube channel: MrAlTarp