Meeting Many we Bundle-COUNT before we ADD

Flexible Bundle-Numbers
 Develop the Child's Innate Mastery of Many

A Paradigm Shift

from LineNumbers without to BundleNumbers with Units

The Goal of Math Education: to master Math or to master Many?

 All say: The goal is to master Math, to later master Many. But Math is hard! Why not first master Many, to later master Math?So we ask:

What Math may grow from children's innate mastery of Many, as developed before school?

Grand Theory Questions to Mathematics Education

- Sociology asks

Does mathematics education suffer from a goal displacement?
What is the goal: to master Many, or to master math?

- Philosophy asks

What to teach: existence or essence
Is it ethical to teach students if they already know

- Psychology asks

How to teach: guided interaction with existence, or mediated essence?

Why Teach Children if they Already Know?

With education curing un-educatedness, we ask: To CURE, be SURE

1. The diagnosed is not already cured
2. The diagnose is not self-referring: teach math to learn maith Core Questions:

- What Mastery of Many does the child have already?
- What could be a ChildCenteredCurriculum in Mastery of Many?

How do Children Master Many?

 Ask a 3-year-old: How old Next Time?The answer is 4 , showing 4 fingers | | | |
But, reacting strongly to 4 fingers held together 2 by 2: "That is not four, that is two twos" || ||
\square
Observation 01: Inside, children see what exists outside, bundles of $\mathbf{2 s}$, in space; and 2 of them, in time. So, they use, not line-, but bundle-numbers with units Observation 02: The child uses a full number-language sentence as in the wordlanguage with a SUBJECT, a VERB, and a PREDICATE:
"That is two twos", shortened to the formula "T = $2 \mathbf{2 s}$ "

Adults also use Bundle-Counting with Units to Master Many in Time and Space

Meeting Many in time (repetition), and in space (extension), we ask: "How Many here", and "How Many in Total?", or Simply " $T=$?"

To bring Many from time to space,

- We tally:

- And bundle-count in polynomials:

$$
\begin{aligned}
T & =345 \\
& =3 \text { ten-ten } \quad 4 \text { ten } 5 \\
& =3 \text { Bundle-Bundle } 4 \text { Bundle } 5 \\
& =3 \times B x B+4 \times B+5 \times 1
\end{aligned}
$$

So, digits are not numbers, but operators, needing digits to become numbers.

What is True Always, and What is True Sometimes

Is this true	Always?	Sometimes?
$2 \times 3=6$	2×3 is $23 s$ that can always be recounted as 6 1s	
$2+3=5$		Only with the same unit $2 x$ week +3 xweek $=5$ xweek $2 x w e e k s+3 x d a y s=17 x d a y s$
$\frac{1}{2}+\frac{2}{3}=\frac{3}{5}$		1 of 2 apples +2 of 3 apples gives 3 of 5 apples, and not 7 of 6
$\frac{1}{2}+\frac{2}{3}=\frac{7}{6}$		Only if taken of the same total

Inside \& Outside the NoUnitMath GreenHouse Same Question - Different Answers

INSIDE $1+2=3$

MatheMatism

True inside,
but seldom outside the

NoUnitMath GreenHouse

OUTSIDE

$1+2=$?
depends on the units
$1 m+2 m=3 m$
$1 \mathrm{~km}+2 \mathrm{~mm}=1 \mathrm{~km}$
1 week + 2days = 9days
A science must give valid
statements
so MatheMatism is no science

2 Math Paradigms: Without and With Units

- an inside 'no-unit-math' number-line paradigm, where $1+2=3$ always, and
- an outside 'unit-math' \square bundle-number paradigm, where $1+2=$? needs units

The 'unit-math' paradigm builds on the philosophy EXISTENTIALISM where

EXISTENCE precedes ESSENCE

So 'unit-math' describes EXISTENCE, and neglects institutionalized ESSENCE
Unit-math is relevant for

- early childhood education
- adult education, and migrant education
- 'bringing back brains’ from special education

$1,2,3, \ldots$ is a String of Names as Monday, Tuesday, Wednesday

With eyes closed, learning a string of number-names by rote is like learning other strings of names of weekdays, months, etc.

But, in a stack of 35 s , the 5 -bundle exists in space, and 3 , the number of 5 s , exists in time.

So, we should include both the 'time-number' and the 'space-number' and the bundle-unit when counting existing things:
0 bundle 1, OB2, ..., OB9, OBten or 1B0, 1B1,..., 1B9, 1Bten or 2B0, Teaching $1+2=3$ without units is falsified by 1 week +2 days $=9$ days.
Addition is only meaningful with like units according to the distributive law:
$T=0 B 1+0 B 2=0 B 3$.

Bundle-Counting becomes Flexible with Overloads and Underloads

Counting 10 fingers in 5 s , we include the unit to describe what exists $0 B 1, O B 2, O B 3, O B 4, O B 5, O B 6, O B 7,2 B$ undle less $2,2 B-1,2 B 0$

$$
\frac{\text { Overload }}{1 B 0,1 B 1,1 B 2,} \quad \frac{\text { Underload }}{1 B 3,1 B 4}
$$

Counting in tens with flexible bundle-numbers:
$\mathrm{T}=38=3 \mathrm{Bundle} 8=2 \mathrm{Bundle} 18=4 \mathrm{Bundle}$ less2, or short
$\mathrm{T}=38=3 B 8=2 B 18=4 B-2$, and
$\mathrm{T}=347=3 B B 4 B 7=2 B B 14 B 7=1 B B 23 B 17$, or
Danish Vikings said:
$\mathrm{T}=347=3 B B 4 B 7=3 B B 5 B-3=4 B B-6 B 7$

Bundle-Counting Fingers in 3s

Over-load, Normal, Under-load	Singels, Bundles, Bundle-Bundles
Ten bundle-counted in 3s: over-load $\mathrm{T}=3 \mathrm{~B} 1$ normal $\mathrm{T}=4 \mathrm{~B}-2$ under-load	3 Singles are 1 Bundle 3 Bundles are 1 Bundle-of-Bundles So $\quad T=9=1 B B 3 s$ And $\begin{aligned} & T=\text { ten }=3 B 13 s=1 B B 13 s \text { or } \\ & T=\text { ten }=1 B B 0 B 13 s \text { or } \\ & T=\text { ten }=1013 s \end{aligned}$ So with units as bundles, and bundle-of-bundles, we do not need the place value system.

Bundle-Counting in $2 \mathrm{~s}, 4$ is a bundle-bundle, and 8 is a bundle-bundle-bundle

1	$0 B 1$	01
2	$1 B 0$	10
3	$1 B 1$	11
4	$1 B B 0 B 0$	100
5	$1 B B 0 B 1$	101
6	$1 B B 1 B 0$	110
7	$1 B B 1 B 1$	111
8	$1 B B B 0 B B 0 B 0$	1000
9	$1 B B B 0 B B 0 B 1$	1001
Ten	$1 B B B 0 B B 1 B 0$	1010

This can be shown with Lego bricks having different colors:
a green 2-brick is B a blue 4-brick is $B B$ a red 8 -brick is $B B B$

How to see the Unbundled Counted in tens?"

Counting in tens, a Total of 2 tens \& 3 can be described $\mathrm{T}=23$ if leaving out the unit and the decimal point,

- or as:

$\mathrm{T}=2 \mathrm{~B} 3$ tens
$\mathrm{T}=2.3$ tens

$\mathrm{T}=3 \mathrm{~B}-7$ tens
$\mathrm{T}=3 .-7$ tens

$\mathrm{T}=2 \mathrm{3} / 10$ tens

Bundle-Counting in tens Including Units, 100 becomes a bundle-bundle, BB

18вово	18B0B1	18B0B2	18B0B3	18B0B4	18B0B5	18B0B6	18B0B7	1BB0B8	18B0B9	$1 \mathrm{BBOB10}$
1080	$10 \mathrm{B1}$	$10 \mathrm{B2}$	$10 \mathrm{B3}$	1084	$10 \mathrm{B5}$	1086	$10 \mathrm{B7}$	$10 \mathrm{B8}$	1089	10810
9B0	9 B 1	9 B 2	9 B 3	9B4	9 B 5	$9 \mathrm{B6}$	$9 \mathrm{B7}$	9B8	9 9 9	9810
8B0	8B1	8B2	8B3	8B4	8B5	8B6	8B7	8B8	$8 \mathrm{B9}$	$8 \mathrm{B10}$
780	7B1	7 B 2	7 B 3	7B4	7 B 5	$7 \mathrm{B6}$	$7 \mathrm{B7}$	$7 \mathrm{B8}$	789	7810
6B0	6B1	6B2	6B3	6B4	6B5	6B6	6B7	6B8	$6 \mathrm{B9}$	$6 \mathrm{B10}$
5B0	5B1	5B2	5 B 3	5B4	5B5	5B6	$5 \mathrm{B7}$	5B8	5B9	B10
4B0	4B1	4B2	4 B 3	4B4	4 B 5	4B6	$4 \mathrm{B7}$	$4 \mathrm{B8}$	$4 \mathrm{B9}$	$4 \mathrm{B10}$
3B0	3B1	3B2	3B3	3B4	3B5	3B6	$3 \mathrm{B7}$	3B8	3B9	$3 \mathrm{B10}$
2B0	2B1	2B2	2B3	2B4	2B5	2B6	2B7	2B8	2B9	$2 \mathrm{B10}$
180	1B1	1B2	183	1B4	1B5	1B6	1B7	1B8	189	1810
OBO	OB1	OB2	OB3	OB4	OB5	OB6	OB7	OB8	OB9	OB10
$10=$ bundle $=B$		$100=$ bundle-bundle $=\mathrm{BB}=\mathrm{B}^{\wedge} 2$				$1000=\text { bundle-bundle-bundle }=\mathrm{BBB}=\mathrm{B}^{\wedge} 3$				

Flexible Bundle-Numbers Ease Operations. Counting in tens, $T=74=7 B 4=6 B 14=8 B-6$

Overload	Underload	Overload	Overload
74	74	8×74	$336 / 7$
18	-18		
$7 B 4$	$7 B 4$	$8 \times 7 B 4$	$33 B 6 / 7$
$1 B 8$	$-1 B 8$		
$8 B 12$	$6 B-4$	$56 B 32$	$28 B 56 / 7$
$9 B 2$	$5 B 6$	$59 B 2$	$4 B 8$
92	56	592	48

Digits as Icons:

Children love making number-icons of cars, dolls, spoons, sticks.
 Changing four ones to one fours creates a 4 -icon with four sticks. An icon contains as many sticks as it represents, if written less sloppy. Once created, icons become UNITS when counting in bundles, as kids do.

one	two	three	four	five	six	seven	eight	nine
I	II	III	IIII	IIIII	IIIIII	IIIIIII	IIIIIIII	IIIIIIIII
						-	\rangle	\rangle
1	2	3	4	5	6	7	8	9

Divide \& Multiply \& Subtract \& Add may be 'de-modeled' as Counting-Icons

- From 9 PUSH away 4s we write 9/4 iconizing a broom, called division.
- 2 times LIFT the 4 s to a stack we write $\underline{2 \times 4}$ iconizing a lift called multiplication.
- "From 9 PULL away 2 4s to find un-bundled" we write 9-2x4 iconizing a rope, called subtraction.
- UNITING next-to or on-top we write B+C
 iconizing the two directions, called addition.

Calculators Predict Counting Results Bundle-Counting a Total of 9 in 2s

9/2 4.some
$9-4 \times 2 \quad 1$

Shifting Units Creates a Recount-Formula

$$
\begin{aligned}
& 8=(8 / 2) \times 2 \\
& T=(T / B) \times B
\end{aligned}
$$

$u \times 2=8$
$u=8 / 2$

Move: OPPOSITE Side \& Sign

Shifting unit	$y=k^{*} x$
Linearity	$\Delta \mathrm{y}=(\Delta \mathrm{y} / \Delta \mathrm{x})^{*} \Delta \mathrm{x}=\mathrm{m}^{*} \Delta \mathrm{x}$
Local linearity	$d y=(d y / d x) * d x=y^{\prime} * d x$
Trigonometry	$\mathrm{a}=(\mathrm{a} / \mathrm{b}) * \mathrm{~b}=\tan \mathrm{A} * \mathrm{~b}$
Trade	\$ = (\$/kg) * kg = price * kg
STEM	$\begin{aligned} \text { meter } & =(\text { meter } / \mathbf{s e c})^{*} \text { sec } \\ & =\text { speed }^{*} \mathrm{sec} \end{aligned}$

The Recount Formula Solves Equations

Asking "How many 2 s in 8 " gives the equation " $u \times 2=8$ ", that is solved by recounting 8 in 2 s :

$$
\begin{array}{ll}
u \times 2 & =8 \\
u & =8 / 2
\end{array}=(8 / 2) \times 2
$$

To solve equations, we MOVE to OPPOSITE side with OPPOSITE calculation sign
So we don't need the balancing method of abstract algebra

$$
\begin{array}{c|c|c|c}
\hline u+2=8 & u \times 2=8 & u \wedge 8=2 & 2^{\wedge} u=8 \\
\hline u=8-2 & u=8 / 2 & u=\sqrt[8]{2} & u=\log _{2}(8) \\
\hline & & \text { FACTOR-finding ROOT } & \text { FACTOR-Counting LOG }
\end{array}
$$

Remember Units when Solving Equations

OppoSite Side with OppoSite Sign		Remember Units
$2+\boldsymbol{u}=8 \quad=(8-2)+2 \times u=8 \quad=(8 / 2) \times 2$	$2+3 \times u=14$ $2 \times 1+3 \times u=14=14-2+2$	
$u=8-2$ Solved by Splitting	$u=8 / 2$ Solved by ReCounting	$u=(14-2) / 3, \quad$ nolved by Including Units

Hymn to Equations

Equations are the best we know, they are solved by isolation.
But first, the bracket must be placed around multiplication.

We change the sign and take away and only x itself will stay.
We just keep on moving, we never give up. So feed us equations, we don't want to stop!

Recounting from Icons to Tens, Asking 6x7 = ?,

 we Meet Algebra in a Bundle-Bundle Square With no 10-button, multiplication directly gives 6 ss as 4B2 tens

Recounting into tens with Overloads in List- \& Block- \& Cross Multiplication

We see that 816 s is 12B8 tens, and that

$1 \times 16=1 \times 1 B 6$	$1 B 6$	$1 B 6=16$
$2 \times 16=2 \times 1 B 6$	$2 B 12$	$3 B 2=32$
$3 \times 16=3 \times 1 B 6$	$3 B 18$	$4 B 8=48$
$4 \times 16=4 \times 1 B 6$	$4 B 24$	$6 B 4=64$
$5 \times 16=5 \times 1 B 6$	$5 B 30$	$8 B 0=80$
$6 \times 16=6 \times 1 B 6$	$6 B 36$	$9 B 6=96$
$7 \times 16=7 \times 1 B 6$	$7 B 42$	$11 B 2=112$
$8 \times 16=8 \times 1 B 6$	$8 B 48$	$12 B 8=128$
$9 \times 16=9 \times 1 B 6$	$9 B 54$	$14 B 4=144$
$10 \times 16=10 \times 1 B 6$	$10 B 60$	$16 B O=160$

34 56s is 190B4 tens

$5 B 6$			24
4	$20 B$	24	
3B	15BB	18 B	
	15BB	38B	
	15BB	$40 B$	4
	19	OB	4

3	B	4
5	B	6
$15 B B$	$(18+20) B$	24
$15 B B$	$40 B$	4
19	$0 B$	4

Increasing the Base, we Decrease the Height. So a Total may be BOX'ed, TEN'ed or SQUARE'd

Bundle-bundles as Squares Eases Algebra

ReCounting in two Units creates PerNumbers \& Proportionality

ReCounting in kg \& \$, gives a PerNumber 4 kg per $5 \$=4 \mathrm{~kg} / 5 \$=4 / 5 \mathrm{~kg} / \$$. With like units, per-numbers become fractions: $4 \$ / 5 \$=4 / 5$, and $4 \$ / 100 \$=4 / 100=4 \%$. With 4 kg linked to $5 \$$, we simply recount in the per-number.
(Or we recount the units directly. Or we equate the per-numbers. Or we use the before 1900 'Rule of 3' (Regula de Tri) alternating the units, and, from behind, first multiply, then divide.)

Questions: 12kg = ?\$	20\$ = ? kg
$12 \mathrm{~kg}=(12 / 4) \times 4 \mathrm{~kg}$	20\$ $=(20 / 5) \times 5 \$$
$=(12 / 4) \times 5 \$=15 \$$	$=(20 / 5) \times 4 \mathrm{~kg}=16 \mathrm{~kg}$
\$ $=(\$ / \mathrm{kg}) \times \mathrm{kg}=5 / 4 \times 12=15$	$\mathrm{kg}=(\mathrm{kg} / \mathrm{\$}) \times \$=4 / 5 \times 20=16$
$u / 12=5 / 4$, so $u=5 / 4 \times 12=15$	$u / 20=4 / 5$, so $u=4 / 5 \times 20=16$
If 4 kg is $5 \$$, then 12 kg is ? $\$$; answer: $12 \times 5 / 4=15$	If $5 \$$ is 4 kg , then $20 \$$ is ? kg ; answer: $20 \times 4 / 5=16$

Proportionality shows the Flexibility of Unit-Math

Proportionality, Q1: " 2 kg costs $5 \$$, what does 7 kg cost"; Q2: "What does $12 \$$ buy?" $\rightarrow 1$) Regula de Tri (rule of three)
Re-phrase with shifting units, the unknown at last. From behind, first multiply then divide. Q1: ' $2 \mathrm{~kg} \operatorname{cost} 5 \$, 7 \mathrm{~kg}$ cost ? $\mathbf{\$}$ '. Multiply-then-divide gives the $\$$-number $7 \times 5 / 2=17.5$. Q2: ' $5 \$$ buys $2 \mathrm{~kg}, 12 \$$ buys ? kg '. Multiply-then-divide gives the kg -number $12 \times 2 / 5=4.8$.
$\rightarrow 2$) Find the unit
Q1: 1 kg costs $5 / 2 \$$, so 7 kg cost $7 \times(5 / 2)=17.5 \$$. Q2: $1 \$$ buys $2 / 5 \mathrm{~kg}$, so $12 \$$ buys $12 \times(2 / 5)=4.8 \mathrm{~kg}$
\rightarrow 3) Cross multiplication
Q1: $2 / 5=7 / u$, so $2^{*} u=7^{*} 5, u=\left(7^{*} 5\right) / 2=17.5$. Q2: $2 / 5=u / 12$, so $5^{*} u=12^{*} 2, u=\left(12^{*} 2\right) / 5=4.8$
$\rightarrow 4$) 'Re-counting' in the 'per-number' $2 \mathrm{~kg} / 5$ \$ coming from 'double-counting' the total T .

$$
\text { Q1: } \mathrm{T}=7 \mathrm{~kg}=(7 / 2) \times 2 \mathrm{~kg}=(7 / 2) \times 5 \$=17.5 \$; \text { Q2: } \mathrm{T}=12 \$=(12 / 5) \times 5 \$=(12 / 5) \times 2 \mathrm{~kg}=4.8 \mathrm{~kg} .
$$

Proportionality also shows the Inflexibility of Greenhouse Mathematics

\rightarrow 5) Modeling with linear functions using group theory from abstract algebra.

- A linear function $f(x)=c^{*} x$ from the set of positive kg-numbers to the set of positive $\$$-numbers, has the domain $D M=\{x \in \mathrm{R} \mid x>0\}$.
- Knowing that $f(2)=c^{*} 2=5$, this equation is solved by multiplying with the inverse element to 2 on both sides, and applying the associative law, and the definition of an inverse element, and of the neutral element under multiplication:

$$
c^{*} 2=5 \bullet\left(c^{*} 2\right)^{* 1 / 2}=5^{* 1 / 2} \bullet c^{*}\left(2^{* 1 / 2}\right)=5 / 2 \bullet c^{*} 1=5 / 2 \bullet c=5 / 2
$$

- With $f(x)=5 / 2^{*} x$, the inverse function is $f^{-1}(x)=2 / 5^{*} x$.
- With 7 kg , the answer is $f(7)=5 / 2 * 7=17.5 \$$.
- With $12 \$$, the answer is $f^{-1}(12)=2 / 5^{*} 12=4.8 \mathrm{~kg}$.

Recounting gives per-numbers in STEM Multiplication Formulas I

STEM typically contains multiplication formulas with per-numbers coming from recounting.
Examples:

- $\mathrm{kg}=(\mathrm{kg} /$ cubic-meter) \times cubic-meter $=$ density \times cubic-meter
- force $=$ (force/square-meter) \times square-meter $=$ pressure \times square-meter
- meter $=($ meter $/ \mathrm{sec}) \times$ sec $=$ speed \times sec
- energy $=($ energy $/ \mathrm{sec}) \times$ sec $=$ Watt \times sec
- energy $=($ energy $/ \mathrm{kg}) \times \mathrm{kg}=$ heat $\times \mathrm{kg}$

Recounting gives per-numbers in STEM and Economics Multiplication Formulas II

Extra examples from STEM, and from economics:

- gram = (gram/mole) \times mole $=$ molar mass \times mole;
- Δ momentum $=(\Delta$ momentum $/ \mathrm{sec}) \times$ sec $=$ force \times sec;
- Δ energy $=(\Delta$ energy/ meter) \times meter $=$ force \times meter $=$ work;
- energy/sec $=($ energy $/$ charge $) \times($ charge $/$ sec $)$ or Watt $=$ Volt \times Amp;
- dollar = (dollar/hour) \times hour $=$ wage \times hour;
- dollar $=$ (dollar/meter) \times meter $=$ rate \times meter
- dollar $=($ dollar $/ \mathrm{kg}) \times \mathrm{kg}=$ price $\times \mathrm{kg}$.

With like Units, PerNumbers become Fractions, both Operators Needing Numbers to Become Numbers

Trial	Prediction
In a box with 2 red per 3 apples, re-counting reds and apples gives the FRACTION 2/3 reds/apples. How many red apples among 12 apples?	Q: ? red in 12 apples. A: Recount 12 in 3 s (the per-number) $\mathrm{T}=12 \mathrm{a}=(12 / 3) \times 3 \mathrm{a}$ gives $\quad(12 / 3) \times 2 r=8$ red apples Or, we equal the per-numbers: $\begin{aligned} & u / 12=2 / 3 ; \text { so } \\ & u \quad=2 / 3 \times 12=8 \end{aligned}$ Moving 12 to opposite side with opposite sign

Enlarging or Shortening Fractions

Taking $2 / 3$ of 12 means taking 2 per 3 of 12 .
With 2 bridged to 3 , we recount 12 in $3 \mathrm{~s}, 12=(12 / 3) \times 3=4 \times 3=43 \mathrm{~s}$ So 4 times we can take 2 , i.e. 8 of the 12 . Thus 2 per $3=8$ per 12 .

This may be used for enlarging or shortening fractions by inserting or removing the same unit above and below the fraction line:
$\frac{2}{3}=\frac{24 \mathrm{~s}}{34 \mathrm{~s}}=\frac{2 * 4}{3^{*} 4}=\frac{8}{12} \quad \frac{8}{12}=\frac{2^{*} 4}{3^{*} 4}=\frac{24 \mathrm{~s}}{34 \mathrm{~s}}=\frac{2}{3} \quad \frac{12 \mathrm{abc}}{8 \mathrm{a}}=\frac{3^{*} 4^{*} \mathrm{a} * \mathrm{~b}}{2^{*} 4^{*} \mathrm{a}}=\frac{3^{*} \mathrm{~b} 4 \mathrm{as}}{24 \mathrm{as}}=\frac{3 \mathrm{~b}}{2}$

Recounting Sides in a Block Halved by its Diagonal gives Trigonometry and Pi

A block cut by its diagonal creates a right triangle with three sides: the base b, the height h, and the cut c. They connect with the angle A by per-number formulas recounting the sides pairwise.

$$
\begin{aligned}
& h=(h / b) \times b=\tan A \times b \\
& h=(h / c) \times c=\sin A \times c \\
& b=(b / c) \times c=\cos A \times c
\end{aligned}
$$

$$
\underline{h \times h+b \times b=c \times c} \text {, so the diagonal adds bundle-bundles }
$$

A circle contains very many small half-blocks, so in the circumference: $\boldsymbol{\pi}=\boldsymbol{n} \times \boldsymbol{\operatorname { t a n }}(\mathbf{1 8 0} / n)$ for n large

$$
\tan A=h / b=\Delta y / \Delta x=\text { rise } / \text { run = diagonal gradient }
$$

Switching, Uniting \& Splitting Units

- Turning a 2D block will change the unit
 $\mathrm{T}=2$ 3s $=2 \times 3 \rightarrow \mathrm{~T}=3 \mathbf{2 s}=3 \times 2$, So $\mathrm{T}=2 \times 3=3 \times 2$ (The Commutative law)
- Turning a 3D block will also change the unit So $\mathrm{T}=2 \times(2 \times 3)=(2 \times 2) \times 3$ (The Associative law)

- A block may split into two parts $\mathrm{T}=3 \mathbf{5 s}=3 \mathbf{2 s}+3 \mathbf{3 s}$ So $T=3 \times 5=3 \times(2+3)=3 \times 2+3 \times 3$ (The Distributive law)

Prime Numbers \& Foldable Numbers When can Blocks be Folded in like Bundles?

The block $\mathrm{T}=2 \mathbf{4 s}=2 \times 4$ has 4 as the bundle-unit.

Turning over gives $\mathrm{T}=4 \mathbf{2 s}=4 \times 2$, now with 2 as the bundle-unit.
4 s can be folded in another bundle as $2 \mathbf{2 s}$, whereas $\mathbf{2 s}$ cannot.
(1 is not a bundle, nor a unit since a bundle-of-bundles stays as 1).
We call 2 a prime unit number, and 4 a foldable unit number, $4=2 \mathbf{2 s}$.
A block of $3 \mathbf{2 s}$ cannot be folded in like bundles.

A block of $3 \mathbf{4 s}$ can be folded: $\mathrm{T}=34 \mathrm{~s}=3 \times(2 \times 2)=(3 \times 2) \times 2=23 \times 2 \mathrm{~s}$.
A number is called even if it can be written with 2 as the unit, else odd.

Finding Possible Units
What are Possible Units in $T=12$?
Units come from folding in prime units:

$$
\mathrm{T}=12=2 \times 2 \times 3
$$

$=\quad 26 \mathrm{~s}$
$=34 \mathrm{~s}$
$=43 \mathrm{~s}=62 \mathrm{~s}$

Recounting Large Numbers in or from Tens:
Same Size, but a new Form
Recounting 6 47s in tens Recounting 476 in 7s

$$
\begin{aligned}
& \mathrm{T}=647 \mathrm{~s}= 6 \\
& 6 \times 47 \\
& 6 \times 4 \mathrm{~B} 7 \\
&=24 \mathrm{~B} 42 \\
&=28 \mathrm{~B} 2 \\
&=28.2 \\
& \\
& \\
& \\
&=47 \mathrm{~B}=476 \\
&=42 \mathrm{~B} 56 \\
&=6 \times 7 \mathrm{~B} 8 \times 7 \\
&=68 \times 7 \\
& \\
& \\
& \\
&
\end{aligned}
$$

Operators become Areas Before Adding

Digits are operators, needing a number to become a number. And, per-numbers and fractions are also operators.
So, to add, operators must first be multiplied to become a number But multiplying creates areas.
Digits and per-numbers and fractions thus add as areas, i.e., as integral calculus
So, calculus comes in three versions

- Primary school calculus: adding digits as bundle-number blocks
- Middle school calculus: adding constant per-numbers and fractions
- High school calculus: adding changing per-numbers

In Unit-Math, BLOCKS are Fundamental

Children see Many as blocks with a number of bundles, and use flexible numbers with units and with over- or underloads

- in numbers: 456 = three blocks

- in algebra: adding blocks next-to or on-top
- in geometry: trigonometry recounts half-blocks

Once Counted \& Recounted, Totals may Add

BUT: NextTo \Rightarrow	OnTop
$45 s+23 s=3$ B2 $8 s$	$45 s+23 s=5 B 15 s$
The areas are integrated	The units are changed to be the same
Adding areas = Integration	Change unit = ReCounting = Proportionality

Reversing next-to addition

"If T1 = 23 s and T2 add next-to as $47 s$, what is T2?"

We pull away the initial block T1 before recounting the rest in 4 s . The recount formula predicts the result:

$$
\begin{aligned}
\mathrm{T} 2 & =(\mathrm{T} 2 / \mathrm{B}) \times \mathbf{B} \\
& =((4 \times 7-2 \times 3) / 4) \times 4=5.24 \mathrm{~s}
\end{aligned}
$$

$$
\begin{array}{lr}
(4 \times 7-2 \times 3) / 4 & \text { 5.some } \\
(4 \times 7-2 \times 3)-5 \times 4 & 2 \\
\hline
\end{array}
$$

Since reversed next-to addition finds area-differences, it is called differential calculus. Here subtraction precedes division; which is natural as reversed integration.

Per-numbers add as Areas (Integral Calculus)

Here, the per-number p is piecewise constant, which gives the sum $\Sigma\left(p^{*} \Delta x\right)$ that becomes $\int p^{*} \mathrm{~d} x$, if it is locally constant, by interchanging epsilon and delta " 2 kg at $\mathbf{3} \mathbf{\$} / \mathbf{k g}+4 \mathrm{~kg}$ at $\mathbf{5} \mathbf{\$} / \mathbf{k g}=6 \mathrm{~kg}$ at $? \mathbf{\$ / k g}$?"

$\begin{array}{r} 2 \mathrm{~kg} \text { at } 3 \mathbf{\$} / \mathrm{kg} \\ +4 \mathrm{~kg} \text { at } 5 \$ / \mathrm{kg} \\ \hline(2+4) \mathrm{kg} \text { at } p \$ / \mathrm{kg} \end{array}$ - Unit-numbers add directly. - Per-numbers must be multiplied to unit-numbers, thus adding as areas under the per-number curve. - Here, multiplication before addition - So, per-numbers and fractions are not numbers, but operators needing numbers to be numbers.	$5 \prod_{p}^{\$ / \mathrm{kg}}$			$\mathrm{p}=\frac{\sum(\$ / \mathrm{kg} \times \mathrm{kg})}{\sum \mathrm{kg}}$	
	3	2x3 \$		4×5 \$	
			2		6

Subtracting PerNumbers (Differentiation)

" 2 kg at $\mathbf{3} \mathbf{\$} / \mathrm{kg}+4 \mathrm{~kg}$ at what $=6 \mathrm{~kg}$ at $\mathbf{5} \mathbf{\$} / \mathrm{kg}$?"

$$
\begin{array}{r}
2 \mathrm{~kg} \text { at } \mathbf{3} \mathbf{\$ / k g} \\
+4 \mathrm{~kg} \text { at } ? \$ / \mathrm{kg} \\
\hline 6 \mathrm{~kg} \text { at } 5 \$ / \mathrm{kg}
\end{array}
$$

We remove the initial 2×3 block, and recount the rest in 4 s to get the per-number.

So, reversed per-number addition means subtracting areas to be reshaped, called differential calculus.

Here subtraction (giving a change, Δ) comes before division, the reverse of multiplication before addition in integral calculus.

Adding Fractions without Units creates a Fraction Paradox

The Teacher	The Students
What is $1 / 2+2 / 3$?	Well, $1 / 2+2 / 3=(1+2) /(2+3)=3 / 5$
No! $1 / 2+2 / 3$ $=3 / 6+4 / 6$ $=7 / 6$	But 1 red of 2 apples +2 red of 3 apples is $1+2$ red of $2+3$ apples, i.e., 3 red of 5 apples! How can it be 7 red out of 6 apples? Inside this classroom $1 / 2+2 / 3$ IS $7 / 6$, always! Again we see that fractions are not numbers, but operators, needing numbers to become numbers. Adding operators without units, may fold outside the 'no-unit-math' greenhouse. Mixing English and metric units made NASA's Mars Climate Orbiter fail in 1999.

Adding Numbers with Like Units, 6+9

Inside the 'no-unit-math' paradigm, numbers add serial next-to on the number line. We find the result by counting on from 6 or 9 .

Outside, in the 'unit-math' paradigm, numbers add parallel on-top. We see that $T=6+9=2 B 36 \mathrm{~s}=2 B-39 \mathrm{~s}=2 B-5$ tens $=1 B 5$ tens $=15$

Added directly as less-numbers:
$T=6+9=B-4+B-1=2 B-5=15$

Subtracting Numbers with Like Units, 9-6

Inside the 'no-unit-math' paradigm, numbers subtract serial next-to on the number line. We find the result by counting backwards.

Outside, in the 'unit-math' paradigm, numbers subtract parallel on-top. We see that $T=9-6=3$; and that $T=6-9=$ less 3 , since $6=9$ less 3

Subtracted directly as less-numbers:
$T=9-6=B-1-(B-4)=0-1--4=-1+4=3$,
$T=6-9=B-4-(B-1)=0-4--1=-4+1=-3$, both showing that - is +

Adding or Subtracting Unspecified Numbers

 Only add like units, so how to add $T=4 a b^{2}+6 a b c$? With 2×3 as 23 s, here units come from folding (factoring):$$
\begin{aligned}
\mathrm{T} & =4 a b^{2}+6 a b c=\mathrm{T} 1+\mathrm{T} 2 \\
& =2 \times 2 \times a \times b \times b+2 \times 3 \times a \times b \times c \\
& =2 \times b \times(2 \times a \times b)+3 \times c \times(2 \times a \times b) \\
& =(2 b+3 c) \times 2 a b \\
& =2 b+3 c 2 a b s
\end{aligned}
$$

a factor-filter					
T1	2	2	a	b	b
T2	2	3	a	b	c
unit	$\mathbf{2}$		\boldsymbol{a}	\boldsymbol{b}	
T1 left		2			b
T2 left		3			c

Change by Adding, and by Multiplying

- Change by adding gives linear change formula:

Adding $3 \$ /$ day to $2 \$$ gives a total of $T=2+3 \times n$ after n days.
The general formula, $\underline{T=b+a \times n}$, is also called change by adding.

- Change by multiplying gives an exponential change formula:

Adding $3 \% /$ day to $2 \$$ gives a total of $T=2 \times 103 \% \wedge n$ after n days since adding 3% means multiplying with 103\%.
The formula, $\underline{T=b \times a^{\wedge} n=b \times(1+r)^{\wedge} n}$, is also called change by multiplying,

- Combining the two gives a simple saving-formula, $\underline{A / a=R / r}$; in an installment plan racing with a Debt-formula, $D=D o \times(1+r)^{\wedge} n$.
(a and r is the per-day $\$$ and $\%$ input; A and R is the final $\$$ and $\%$ output, where $1+R=(1+r)^{\wedge} n$) Splitting up 100% in n pieces gives the Euler-number $e=(1+1 / n)^{\wedge} n$ for n big.

Reversing Change by Adding and Multiplying

Reversing change by adding gives one equation:

- $100=20+5 \times u$, easily solved by splitting, and recounting: $100=(100-20)+20$, so $u \times 5=100-20=80=(80 / 5) \times 5$, so $u=80 / 5=16$.

Reversing change by multiplying gives two equations:

- In $20=u^{\wedge} 5,5$ factors u give 20 , predicted by a factor-finding root, $u=\sqrt[5]{20}=1.82$.
- In $20=5^{\wedge} u$, u factors 5 give 20, predicted by a factor-counting logarithm, $u=\log _{5}(20)=1.86$.

There are 4 ways to Unite or Split a Total into Unit- and Per-numbers

A number-formula (polynomial) $T=345=3 B B 4 B 5=3 x B^{\wedge} 2+4 x B+5$ shows the 4 ways to unite: $+, x, \wedge$, next-to block-addition (integration). Addition and multiplication unite changing and constant unit-numbers. Integration and power unite changing and constant per-numbers. We might call this beautiful simplicity the 'Algebra Square' since in Arabic, algebra means to reunite. - The 4 uniting operations each has a reverse splitting operation: Addition has subtraction (-), and multiplication has division (/). Power has factor-finding (root, V) and factorcounting (logarithm, log). Integration has per-number finding (differentiation $\mathrm{dT} / \mathrm{dn}=\mathrm{T}^{\prime}$). Reversing operations is solving equations, done by moving to opposite side with opposite sign.

Operations unite / split into	Changing	Constant
Unit-numbers	$\boldsymbol{T}=\boldsymbol{a}+\boldsymbol{n}$	$\boldsymbol{T}=\boldsymbol{a} \mathbf{x} \boldsymbol{n}$
$\$, k g, m, s$	$T-a=n$	$T / n=a$
Per-numbers	$\boldsymbol{T}=\int \boldsymbol{a} \mathbf{d} \boldsymbol{n}$	$\boldsymbol{T}=\boldsymbol{a}^{\boldsymbol{\wedge}} \boldsymbol{n}$
$\$ / \mathrm{kg}, \mathrm{m} / \mathrm{s}, \mathrm{m} /(100 \mathrm{~m})=\%$	$\mathrm{~d} T / \mathrm{d} n=a$	$\log _{a} T=n,{ }^{n} V T=a$

8 Competencies Inside the No-Unit Greenhouse only 2 Competences Outside

INSIDE
NoUnit GreenHouse

OUTSIDE

To master MANY,

first you COUNT
then you ADD

OECD 's View is in its Learning Framework 2030 Instead of Mathematics, it points to Numeracy

The OECD Learning Framework 2030

Concepts have Different Definitions in the 'no-unit-Math' and the 'unit-Math' Paradigm

	Inside 'no-unit-Math'	Outside the 'no-unit' Greenhouse
Goal	To master, first Math, later Many	To master first Many, later Math
Basis	Sets, expressions, and functions	Many, counted and added in full sentences
Science	Pure science	Natural science about Many
Self-reference	Self-reference is meaningful	Self-reference is meaningless
Validity	Addition and multiplication are valid	Multiplication is always valid, addition only sometimes
Education	Mediate institutionalized essence	Exploring existing things and actions
Theorist	Vygotsky	Piaget
Competence	8 needed to master Math	2 needed to master Many: Count and Add
Accessible	To few only	To all
Modeling	All models are fiction	Fact and fiction as in the word-language

Concepts have Different Definitions Inside and Outside the 'no-unit-Math' Greenhouse II

	Inside 'no-unit-Math'	Outside the 'no-unit' Greenhouse
Digits	Symbols as letters	Icons with as many sticks as they represent
Many digits	One number obeying a place value system	Many numbers numbering unbundled, bundles, bundle-of-bundles, etc.
Numbers	Line-numbers with lengths, without units	Block-numbers with areas, and with units
Types	Cardinal and ordinal numbers	Space and time numbers
Divide, 8/2	Equal sharing, 8 equally shared by 2	Bundle-counting, 8 counted in 2s
Multiply, 6×7	$6 \times 7=42=4.2$ tens, recounted in tens,	$6 \times 7=67 \mathrm{~s}$, a block that may or not recount in tens
Subtract, 7-2	Take away singles, $7-2=5$	Pull away a block to look for unbundled singles $7-2 \times 3=1.50, T=7=2 B 13 s$
Add	Unite line-segments $2+3=5$	Unite areas on-top; or next-to, integral calculus $23 s+45 s=? 5 s ;$ or $23 s+45 s=? 8 s$

Concepts have Different Definitions Inside and Outside the 'no-unit-Math' Greenhouse III

	Inside 'no-unit-Math'	Outside the 'no-unit' Greenhouse
PerNumber	Not recognized	Recounting in two units
Fraction	A rational number to add without units	A per-number, both operators needing a number to become a number; so they add by areas, integral calculus
Geometry	Plane, coordinate, trigonometry	Trigonometry, coordinate, plane
Equations	Equivalence relation, solved by using abstract algebraic group theory	Reversed calculation, solved by moving to opposite side with opposite sign
Function	A subset of a set-product where first-comp. identity implies second-component identity	A number-language sentence or formula with an subject, and a predicate or calculation
Graph	A subset in a set-product	Running numbers in a plane
Linear function	A homomorphism	Constant change per-number (gradient, slope)
Differentiable	Meeting an epsilon-delta condition	Locally linear, with a locally constant change per-number
Continuous	Meeting an epsilon-delta condition	Locally constant, as piecewise, only epsilon <-> delta

Concepts have Different Definitions Inside and Outside the 'no-unit-Math' Greenhouse IV

	Inside 'no-unit-Math'	Outside the Greenhouse
Root, log	Irrational numbers	Root is a factor-finder, log is a factor-counter
PreCalculus	Linear and exponential functions	Constant change by adding \& multiplying
Statistics	Stochastics and random variables	Unpredictable change predicted by mean \& median
Quadratics	Degree 2 polynomials to factorize	Constant changing change and curvature
Calculus	Derivatives and anti-derivatives	Adding and finding locally constant per-numbers
Differential	Derivatives as limits, first	Change predicted by locally constant per-numbers, next
Integral	Finding anti-derivatives, next	Adding locally constant per-numbers by areas, first
Differential equations	Only few have solutions Numerical methods should be avoided	Change formulas, numerically solved by a computer adding the formula's changes to a total change
Vectors	Vector space: the top algebraic structure	A quick way to do 2D and 3D coordinate geometry

Solving Equations by Recounting, we may Bracket Group Theory from Abstract Algebra

Unit-Math

$2 \times u=8=(8 / 2) \times 2$	Solved by re-counting 8 in 2 s
$u=8 / 2=4$	Move: Opposite Side with OppoSite Sign

No-unit-Math (Don't test, but DO remember the bi-implication arrows)

The Child's own Unit-Math Curriculum

1) Digits are (sloppy) icons, with as many sticks as they represent.
2) Totals are counted by bundling, giving geometrical multi-blocks, and algebraic bundle-numbers with units, when turned to hide the units behind.
3) Operations are icons showing the counting steps. First PUSH \& LIFT bundles. Then PULL stacks to find the unbundled ones.
4) The operation order is division first, then multiplication, then subtraction. Addition next-to \& on-top comes later after totals are counted \& re-counted.
5) Counting \& re-counting is big fun, when predicted by a calculator with the recount formula: $\mathbf{T}=(\mathbf{T} / \mathbf{B}) \mathbf{x B}$ (The total T contains T / B times $B s$) Question: $T=45 s=$? $3 s \bullet$ Answer: $T=45 s=6 B 23 s \bullet$ Prediction: $4 \times 5 / 3 \quad 6$. some
$\bullet \bullet \odot \odot \odot$
$\bullet \odot \odot \odot \odot$

$\bullet \odot \odot \odot \odot$$\quad \rightarrow \quad$| $\bullet \odot \odot$ |
| :--- |
| $\bullet \odot \odot$ |
| $?$ |

Differences to the No-Unit-Math Curriculum I

A no-unit-math curriculum operates on specified and unspecified numbers.

- Digits are given directly as symbols, without letting children discover digits as icons with as many strokes or sticks as they represent.
- Numbers are one-dimensional line-numbers with digits respecting a place value system, without letting children discover the thrill of twodimensional bundling and stacking, counting both singles and bundles and bundles-of-bundles etc., and also including the units.
- Seldom, if ever, 0 is included in the counting sequence as 'OBundle1, OB2, OB3', in order to show the importance of bundles as units.

Differences to the No-Unit-Math Curriculum II

- Never children are told that eleven and twelve comes from the Vikings, counting '(ten and) 1 left', '(ten and) 2 left'.
- Never children use full number-language sentences, $T=25 \mathrm{~s}$, including both a subject \& a verb \& a predicate with a unit.
- Seldom children are asked to describe numbers after ten as 1B4 tens or 1 ten4 or 1.4 tens with a unit and with a decimal point separating bundles and unbundled singles.
- Seldom 17 is recounted as $2 \mathbf{B}-3$ tens, or 2.-3 tens. Nor is 24 recounted as 1B14 tens, or 3B-6 tens.

Differences to the No-Unit-Math Curriculum III

- The tradition never respects the natural order of operations. Instead it turns the order around by giving addition without units priority over subtraction \& multiplication \& division.
- In short, children never experience the enchantment of counting and re-counting Many before being forced to add on-top only, thus neglecting next-to addition.
Re-enchanting Many therefore is a goal for the unit-math curriculum in Mastery of Many. So, it respects and develops the children's existing mastery of Many, by counting before adding, and by using flexible bundle-numbers with units.

Summary: What is the Core Difference?

		No-unit-math	Unit-math
Digits	4	Symbol	Icon with four strokes
Numbers	456	One number	Three numberings, 4BB 5B 6
Division	$8 / 2$	8 split in 2	8 counted in 2s
Multiplication	6×7	42	$67 s$ or 4B2 tens
Addition	$2+3$	$2+3=5$	$24 s+35 s=2 B 39 s$ $24 s+35 s=4 B 15 s$
Equations	$3 \times u=12$	Neutralize $(3 \times u) \times 1 / 3=12 \times 1 / 3$ $(u \times 3) \times 1 / 3=4$ $u \times(3 \times 1 / 3)=4$ $u \times 1=4$ $u=4$	Recount, or simply move to Opposite side with opposite sign $u \times 3=12=(12 / 3) \times 3$ $u=12 / 3=4$
Fractions	$2 / 3$	Numbers $1 / 2+2 / 3$ IS $7 / 6$ always	Per-numbers, i.e., operators, needing numbers to become numbers: $1 / 2$ of $2+2 / 3$ of 3 IS $3 / 5$ of 5

Different Answers from ESSENCE- \& EXISTENCE-based Math Education

	ESSENCE-set-based Math	EXISTENCE-many-based Math
Philo sophy	Line-numbers Addition first, Division last Fractions as numbers Geometry before Trigonometry Late Calculus, Differentiation before Integration	Area-numbers (flexible bundle-numbers with units) Division first, Addition last: push, lift, pull, add Fractions as Per-Numbers, operators - not numbers Trigonometry before Geometry Primary, middle and high school Calc. , Int. before Diff.
Socio logy	Serve institutional knowledge Use thick textbooks Accept goal displacement: Mastery of Mathematics is the goal. Later, others may apply mathematics	Facilitate individual knowledge construction Use short compendia with models Reject goal displacement: Mastery of Many is the goal. Later mastery of essence-based mathematics may be tried, if needed
Psycho logy	Mediate knowledge about expressions. High dropout rate accepted, and explained by theory-based research	Communicate about Many in full sentences with an outside subject, and an inside chosen predicate. Low dropout rate with grounded design research

Conclusion I

The outside 'unit-math' paradigm provides the same mathematics as the inside 'no-unitmath' paradigm, only in a different order. And the 'unit-math' paradigm avoids the inside paradigm's 'mathematism' with falsifiable addition-claims.
So, to become a full science, mathematics should leave its 1 plus 2 is 3 'no-unit-math' greenhouse, and accept that, of course, numbers cannot add without units.
It should teach the outside 'counting-before-adding' 'unit-math' paradigm where

- Numbers and operations are icons linked directly to existing things and actions
- Totals are bundle-counted to create flexible bundle-numbers that with overloads and underloads include decimals, negatives and fractions for the unbundled singles
- Recounting to change unit creates a recount formula, $T=(T / B) \times B$, that solves proportionality equations all over mathematics and STEM
- Adding next-to and on-top leads directly to the math core: calculus and linearity

Conclusion II

- Bundle-counting means pushing away bundles by division, lifting bundles into a block by multiplication, and pulling away the block to find unbundled singles that may be counted as decimals, fractions or negatives
- Recounting a total in another unit creates a recount formula, $T=(T / B) \times B$, predicting recounting results and proportionality all over STEM
- Recounting from tens to icons gives multiplication-equations solved by moving known numbers to opposite side with opposite calculation sign
- Recounting from icons to tens roots multiplication tables, and algebra
- Recounting in physical units creates per-numbers, becoming fractions with like units; both are not numbers, but operators needing numbers to become numbers
- Recounting the sides in a block halved by its diagonal creates trigonometry and pi

Conclusion III

- Adding blocks next-to means integrating areas thus becoming integral calculus, subtracting blocks then becoming differential calculus
- Adding blocks on-top, the units become like through proportional recounting
- Per-numbers add by their areas under the per-number graph
- A total may change by adding, or by multiplying. Reversing change by multiplying gives the factor-finding root, and the factor-counting logarithm
- The algebra-square shows the 4 ways to unite parts into a total, and the 5 ways to split a total into parts
- In philosophy, the 'unit-math' paradigm resonates with existentialism (where existence precedes essence); and with Piaget psychology (where learning takes place through guided meetings with the subjects, and not by having institutionalized essence mediated)

A Communicative Turn in Language Education

Before 1970, foreign language was taught as an example of its grammar. Then a reaction came with The Communicative Turn.
Halliday: "A functional approach to language means investigating how language is used: trying to find out what are the purposes that language serves for us."
Likewise, Widdowson adopts a "communicative approach to the teaching of language" so more students learn a language by communicating about outside things and actions.

Also mathematics should have its Communicative Turn!

 So, language beforemeta-language, please.

Inside Language

A Final Question

Should Ethical Quality Education force children inside a 'no-unit-math' greenhouse that slowly strangles their innate number-language by using line-numbers to learn no-unit addition that folds outside?

Where children's innate mastery of Many just waits to be developed by flexible bundle-numbers available at their fingertips.

BundleCount Before you Add Booklet Free to Download

Math Dislike CURED

by Flexible BundleNumbers
My Many Math Tears will not Stay - if 1 Bundle the Stray Away BundleCOUNT before you ADD
$\mathbf{T}=\mathbf{5}=\||\||=1 B 32 \mathrm{~s}$
$\mathbf{T}=\mathbf{5}=\mathrm{H} \| \mathrm{I}=2 \mathrm{~B} 1 \mathrm{2s}$
$\mathbf{T}=\mathbf{5}=\mathrm{HH}=3 \mathrm{~B}-12 \mathrm{~s}$
3 ways to BundleCount: Overload, Normal, Underload ReCount 47 in tens: $\mathrm{T}=47=4 \mathrm{~B} 7=3 \mathrm{~B} 17=5 \mathrm{~B}-3$ tens
NO, 4×7 is not 28 , it is $47 \mathrm{~s}=2 \mathrm{~B} 8=1 \mathrm{~B} 18=3 \mathrm{~B}-2$ tens No, $30 / 6$ is not 30 split by 6 , but $\mathbf{3}$ tens recounted in 6 s BundleWriting tells InSide Bundles from OutSide Singles

- $65+27=6 \mathrm{~B} 5+2 \mathrm{~B} 7=8 \mathrm{~B} 12=9 \mathrm{~B} 2=92$ - $65-27=6 B 5-2 B 7=4 B-2=3 B 8=38$
- $7 \times 48=7 \times 4 B 8=28 B 56=33 B 6=336$
- $336 / 7=33 B 6 / 7=28 B 56 / 7=4 B 8=48$
- $336 / 7=33 \mathrm{~B} 6 / 7=35 \mathrm{~B}-14 / 7=5 \mathrm{~B}-2=48$

MatheMatics as ManyMath - a Natural Science about Many Makes Math Potentials Blossom in Children, Adults \& Migrants Allan.Tarp@MATHeCADEMY.net

Contents

Preface

Introduction to the Chapters

1. From Sticks to Icons.
s...........
2. Counting-sequences in Icons3. BundleCount in Icons
3. BundleCount with Dices. .7
4. ReCount in the Same Unit. -
5. ReCount in a New Unit. 11
6. ReCount in BundleBundles 13
. Count in Tens on Squared Paper or an Abacus15
7. ReCount from Tens 17
8. ReCount Large Numbers in Tens 19
9. DoubleCount with PerNumbers 21
10. DoubleCount with Fractions and Percentages 22
11. ReCount PerNumbers, Fractions 23
. Add OnTop 24
12. Reversed Adding OnTop 25
13. Add NextTo 26
14. Reversed Adding NextTo 27
15. Add Tens28
16. Reversed Adding Ten 29
17. Recounting Solves Equations. 30

1day free Zoom Seminar: To Cure Math Dislike, BundleCount before you Add

Action Learning based on the Child's own Bundle-Numbers with Units

09-11. Listen and Discuss the PowerPointPresentation

Flexible Bundle-Numbers Develops Children's Innate Mastery of Many, from MetaMatism to ManyMath

- MetaMatism = MetaMatics + MatheMatism
- MetaMatics presents a concept TopDown as an example, instead of BottomUp as an abstraction
- MatheMatism is true inside, but seldom outside the 'no-unit-math' greenhouse
- ManyMath, a natural science about Many, mastering Many by BundleCounting, ReCounting \& Adding NextTo and OnTop.

11-13. Zoom Conference. Lunch.

13-15. Workshop in the BundleCount before you Add booklet to experience proportionality \& calculus \& solving equations as golden LearningOpportunities in BundleCounting \& NextTo Addition.

15-16. Coffee. Zoom Conference.

8 MicroCurricula for Action Learning \& Research

C1. Create Icons

C2. Count in Icons
C3. ReCount in the Same Icon (Negative Numbers)
C4. ReCount in a Different Icon (Proportionality)

A1. Add OnTop (Proportionality) A2. Add NextTo (Integrate)
A3. Reverse Adding OnTop (Solve Equations) A4. Reverse Adding NextTo (Differentiate)

SUMMARY

	QUESTIONS	ANSWERS
$\begin{array}{c\|} \hline \text { C1 } \\ \text { COUNT } \end{array}$	How to count Many? How to recount 8 in $3 \mathrm{~s}: \mathrm{T}=8=$? 3 s How to recount 6 kg in $\$: T=6 \mathrm{~kg}=$? $\$$ How to count in standard bundles?	By bundling and stacking the total T predicted by $\mathrm{T}=(\mathrm{T} / \mathrm{b})^{*} \mathrm{~b}$ $\mathrm{T}=8=? * 3=? 3 \mathrm{~s}, \mathrm{~T}=8=(8 / 3) * 3=2 * 3+2=2 * 3+2 / 3 * 3=22 / 3 * 3$ If $4 \mathrm{~kg}=2 \$$ then $6 \mathrm{~kg}=(6 / 4) * 4 \mathrm{~kg}=(6 / 4)^{*} 2 \$=3 \$$ Bundling bundles gives a multiple stack, a stock or polynomial: $\mathrm{T}=423=4 \mathrm{~B} \text { undle } \mathrm{B} \text { undle }+2 \mathrm{Bundle}+3=4 \operatorname{tenten} 2 \operatorname{ten} 3=4 * \mathrm{~B}^{\wedge} 2+2 * \mathrm{~B}+3$
$\begin{array}{c\|} \hline \mathrm{C} 2 \\ \text { COUNT } \end{array}$	How can we count possibilities? How can we predict unpredictable numbers?	By using the numbers in Pascal's triangle We 'post-dict' that the average number is 8.2 with the deviation 2.3 . We 'pre-dict' that the next number, with 95% probability, will fall in the confidence interval 8.2 ± 4.6 (average $\pm 2 *$ deviation)
$\begin{gathered} \text { A1 } \\ \text { ADD } \end{gathered}$	How to add stacks concretely? $\mathrm{T}=27+16=2 \operatorname{ten} 7+1 \operatorname{ten} 6=3 \operatorname{ten} 13=?$ How to add stacks abstractly?	By restacking overloads predicted by the restack-equation $\mathrm{T}=(\mathrm{T}-\mathrm{b})+\mathrm{b}$ $\mathrm{T}=27+16=2$ ten $7+1$ ten $6=3$ ten $13=3$ ten 1 ten $3=4$ ten $3=43$ Vertical calculation uses carrying. Horizontal calculation uses FOIL
$\begin{gathered} \hline \text { A2 } \\ \text { ADD } \end{gathered}$	What is a prime number? What is a per-number? How to add per-numbers?	Fold-numbers can be folded: $10=2$ fold5. Prime-numbers cannot: $5=1$ fold5 Per-numbers occur when counting, when pricing and when splitting. The $\$ /$ day-number a is multiplied with the day-number b before added to the total $\$$-number T: $\mathrm{T} 2=\mathrm{T} 1+\mathrm{a} * \mathrm{~b}$
$\begin{gathered} \text { T1 } \\ \text { TIME } \end{gathered}$	How can counting \& adding be reversed? Counting ? 3 s and adding 2 gave 14 . Can all calculations be reversed?	By calculating backward, i.e. by moving a number to the other side of the equation sign and reversing its calculation sign. $x^{*} 3+2=14$ is reversed to $x=(14-2) / 3$ Yes. $x+a=b$ is reversed to $x=b-a, x^{*} a=b$ is reversed to $x=b / a, x^{\wedge} a=b$ is reversed to $x=a \sqrt{ } b, a^{\wedge} x=b$ is reversed to $x=\log b / \log a$
$\begin{gathered} \hline \text { T2 } \\ \text { TIME } \end{gathered}$	How to predict the terminal number when the change is constant? How to predict the terminal number when the change is variable, but predictable?	By using constant change-equations: If $K o=30$ and $\Delta K / n=a=2$, then $K 7=K o+a * n=30+2 * 7=44$ If $\mathrm{Ko}=30$ and $\Delta K / K=r=2 \%$, then $K 7=K o^{*}(1+r)^{\wedge} n=30^{*} 1.02^{\wedge} 7=34.46$ By solving a variable change-equation: If $K o=30$ and $d K / d x=K^{\prime}$, then $\Delta K=K-K o=\int K^{\prime} d x$
$\begin{gathered} \text { S1 } \\ \text { SPACE } \end{gathered}$	How to count plane and spatial properties of stacks and boxes and round objects?	By using a ruler, a protractor and a triangular shape. By the 3 Greek Pythagoras', mini, midi \& maxi By the 3 Arabic recount-equations: $\sin A=a / c, \cos A=b / c, \tan A=a / b$
$\begin{gathered} \text { S2 } \\ \text { SPACE } \end{gathered}$	How to predict the position of points and lines? How to use the new calculation technology?	By using a coordinate-system: If $\operatorname{Po}(x, y)=(3,4)$ and if $\Delta y / \Delta x=2$, then $\operatorname{Pl}(8, y)=\operatorname{Pl}(x+\Delta x, y+\Delta y)=\operatorname{Pl}((8-3)+3,4+2 *(8-3))=(8,14)$ Computers can calculate a set of numbers (vectors) and a set of vectors (matrices)
QL	What is quantitative literature? Does quantitative literature also have the 3 different genres: fact, fiction and fiddle?	Quantitative literature tells about Many in time and space The word and the number language share genres: Fact is a since-so calculation or a room-calculation Fiction is an if-then calculation or a rate-calculation Fiddle is a so-what calculation or a risk-calculation

Teacher Training in ManyMath, using CATS Count \& Add in Time \& Space

PYRAMIDeDUCATION

In PYRAMIDeDUCATION a group of 8 teachers are organized in
2 teams of 4 choosing 2 instructors and 3 pairs by turn.

- Each pair works together to solve Count\&Add problems.
- The coach assists the instructors when instructing their team and when correcting their Count\&Add assignments.
- Each teacher pays by coaching a new group of 8 teachers.

1 Coach
2 Instructors
3 Pairs
2 Teams

Watch MrAITarp YouTube Videos

- Postmodern Mathematics Debate
- ReCounting removes Math Dislike
- IconCounting \& NextTo-Addition
- PreSchool Mathematics
- Fractions
- PreCalculus
- Calculus
- Mandarin Mathematics
- World History

DifferenceResearch finds Differences making a Difference Action Learning

Uncover a difference

Recounting looks like Dienes MultiBase Blocks

- "Dienes' name is synonymous with the Multi-base blocks (also known as Dienes blocks) which he invented for the teaching of place value.
- He also is the inventor of Algebraic materials and logic blocks, which sowed the seeds of contemporary uses of manipulative materials in mathematics instruction.
- Dienes' place is unique in the field of mathematics education because of his theories on how mathematical structures can be taught from the early grades onwards using multiple embodiments through manipulatives, games, stories and dance."
(http://www.zoltandienes.com/about/)

Dienes on Numbers and MultiBase Blocks

"The position of the written digits in a written number tells us whether they are counting singles or tens or hundreds or higher powers. This is why our system of numbering, introduced in the middle ages by Arabs, is called the place value system. My contention has been, that in order to fully understand how the system works, we have to understand the concept of power. (..) In school, when young children learn how to write numbers, they use the base ten exclusively and they only use the exponents zero and one (namely denoting units and tens), since for some time they do not go beyond two digit numbers. So neither the base nor the exponent are varied, and it is a small wonder that children have trouble in understanding the place value convention. (..) Educators today use the "multibase blocks", but most of them only use the base ten, yet they call the set "multibase". These educators miss the point of the material entirely."
(What is a base?, http://www.zoltandienes.com/academic-articles/)

UnitMath turns MetaMath upside down

Dienes teaches the 1D place value system with 3D blocks to illustrate the importance of the power concept.

- Unit-Math teaches decimal numbers with units and stays with 2D to illustrate the importance of bundle-units and of adding areas.
Dienes wants to bring examples of abstractions to the classroom
- Unit-Math wants to build abstractions from concrete examples

Dienes teaches top-down 'MetaMath' derived from the concept Set

- Unit-Math is a bottom-up natural science about the physical fact Many; and sees Set as a meaningless concept because of Russell's set-paradox: The set of sets not belonging to itself, belong to itself if it does not.

Theoretical Background

Tarp, A. (2018). Mastering Many by counting and recounting before adding on-top and next-to. Journal of Math Education, March 2018, 11(1), 103-117.
Tarp, A. (2020). De-modeling numbers, operations and equations: from inside-inside to outsideinside understanding. Ho Chi Minh City Univ. of Education Journal of Science 17(3), 453-466. Tarp, A. (2022). Bundles bring back brains from unethical special education. Journal of Math Education, submitted.

Meeting Many we Bundle-COUNT before we ADD

Flexible Bundle-Numbers Develop the Child's Innate Mastery of Many
A Paradigm Shift from LineNumbers without to BundleNumbers with Units

This presentation and its PDF may be found here: http://mathecademy.net/Korean-math-ed-2021/
Q\&A: Questions and answers are shown here also.
Mail: Allan.Tarp@MATHeCADEMY.net
YouTube channel: MrAITarp

